支撑座安装注意事项

怎样才是安装支撑座的正确方法?其实很多人都知道,但也有少数人不太了解,今天小编就来跟大家说一下安装支撑座的步骤。 安装步骤一:安装固定端至螺杆 1.不可拆开支撑座 2.置入螺杆至支撑座时要小心避免刮伤油封外唇 3.置入支撑座固定端后,使用内六角螺丝及铜垫片将螺帽锁上 4.组装支撑端轴承至螺杆本体,并以弹性扣环锁上,将组装好的部分放至支撑端外 安装步骤二:安装至滑台及基座 1.将工作台与滚珠螺杆的连接块用螺丝暂时固定,将支撑座的固定端暂时固定在基座,往固定端移动滑台使螺杆置中,调整螺丝的中心点使滑台的移动滑顺。 2.当使用到支撑座的固定端为参考点时,调整螺丝与滑台之前,或是螺丝与连接块内部的间隙。当使用到支撑座的固定端为参考时,高速支撑座的轴高。(支撑座是方形式的) 3.将支撑端移动滑台使螺杆置中,调整螺丝的中心点,往左往右移动数次以检查滑台的移动是否滑顺,在暂时将系统固定在基座上。 安装步骤三:确定精度及最后紧配 确定螺杆末端及轴的间隙符合公差之后,最后将滑台、连接块、固定端与支撑端锁紧固定。 安装步骤四:与马达之联结 1.在基座装上马达固定端 2.以联轴器联结马达及螺杆(注意:确定安装精度) 3.安装后马达运转测试 只要大家安装正确的步骤安装支撑座,那基本上是没什么问题了。

过滤器的选型与应用,快来看一看

过滤器是除去液体中少量固体颗粒的小型设备,可保护设备的正常工作。 一. 过滤器选型的原则要求 过滤器是除去液体中少量固体颗粒的小型设备,可保护设备的正常工作,当流体进入置有一定规格滤网的滤筒后,其杂质被阻挡,而清洁的滤液则由过滤器出口排出,当需要清洗时,只要将可拆卸的滤筒取出,处理后重新装入即可。 1.过滤器进出口通径: 原则上过滤器的进出口通径不应小于相配套的泵的进口通径,一般与进口管路口径一致。 2.公称压力选型: 按照过滤管路可能出现的最高压力确定过滤器的压力等级。 3.孔目数的选择: 过滤器孔目数的选择主要考虑需拦截的杂质粒径,依据介质流程工艺要求而定。各种规格丝网可拦截的粒径尺寸查下表“滤网规格”。 4.过滤器材质: 过滤器的材质一般选择与所连接的工艺管道材质相同,对于不同的服役条件可考虑选择铸铁、碳钢、低合金钢或不锈钢材质的过滤器。 5.过滤器阻力损失计算 水用过滤器,在一般计算额定流速下,压力损失为0.52~1.2kpa。 二.过滤器应用 1.不锈钢过滤器 不锈钢过滤器广泛用于蒸汽、空气、水、油品,等多种介质的管线中;保护管线系统各种设备、水泵、阀门等;免受管道内铁锈、焊碴等杂质,带来的堵塞和损坏。不锈钢过滤器抗污性强,排污方便,流通面积大,压力损失小,结构简单,体积小,重量轻。过滤网材质均为不锈钢,耐腐蚀性强,使用寿命长。 2.Y型过滤器 Y型过滤器输送介质的管道系统不可缺少的一种过滤装置,Y型过滤器通常安装在减压阀、泄压阀、定水位阀或其它设备的进口端,用来清除介质中的杂质,以保护阀门及设备的正常使用。Y型过滤器具有结构先进,阻力小,排污方便等特点。 3.Y型拉杆伸缩过滤器 Y型拉杆伸缩过滤器采用新型的设计,把Y型过滤器与伸缩接头组合,结构简单,使用方便,解决了各种不同标准产品的法兰间长度不同而造成固定管道上安装不便的缺陷,拉杆伸缩过滤器主要用于高层建设、多层建筑或工厂内给排水配管,通常安装于减压阀、泄压阀、定水位阀或其它主要设备的进口端,安装了拉杆伸缩过滤器后便于削除管道杂物或安装拆卸以保证阀类或设备之正常使用。 4.篮式过滤器 篮式过滤器除去液体中含有少量固形物的小型设备,可保护压缩机、泵和其它设备及仪表等正常工作;也是提高产品纯度、净化气体的小型设备。因此,篮式过滤器广泛应用于石油、化工、化纤、医药、食品等工业。篮式过滤器有壳体、排污盖、滤芯、滤网、螺栓等组成。 5.T型过滤器 T型过滤器广泛应用于蒸汽、空气、水、油品等多种介质的管线中,保护管线系统上各种设备,如水泵、阀门等,免受管道内的铁锈、焊渣等杂物带来对管道的堵塞和损坏。上海日美阀门制造有限公司生产的T型过滤器具有抗污性能强,排污方便,流通面积大,压力损失小,结构简单,体积小等特点;T型过滤器的过滤网材质均是不锈钢,耐腐蚀性强,使用寿命长;T型过滤器还分直流式和折流式,过滤网的密度有10目-120目,温度0~450℃.

滚动直线导轨的分类,特点

滚动直线导轨副的分类、特点 各类产品的共性: 直线导轨副是实现无限接长以及批量提供互换性导轨副。由于关键生产设备及检测设备都是引进的德国、意大利、日本、美国等的先进设备,所使用的关键工具、刀具等也是引进的国际上著名厂家的产品以及长年积累的先进生产技术和测量技术等保证了HTPM产品高精度及质量的稳定性,大批量生产的直线导轨90%以上可以达到2级以上,并可以生产原作为发展级别的1级精度产品。 使用高质量的钢种及精湛的热处理加工技术,通过严格的过程控制,保证产品卓越的耐用性。 圆滑的反向器循环结构及滑块的过渡曲线的设计与制造,使HTPM产品运动流畅、振动及噪声小。通过严格试验,精心选用特殊具有自润滑性能、耐冲击能力强的工程塑料,满足HTPM产品的高速和高加速的要求。 控制导轨弯曲变形量,安装孔孔距精度高,保证HTPM产品安装方便。 设计精度和性能指标以替代进口为目标。 各类产品的特性: 类双圆弧型(LG) 沟槽采用独特的类双圆弧结构,具有优异的静刚度和耐冲击性、高精度、误差均化能力强等性能指标。将滚珠和沟槽之间的接触角度设定为45°,使上下左右方向负载的承受能力及刚性均匀;承受冲击载荷和重载荷作用时,承载接触区增大,提高了系统的刚度;使在超高负载的情况下,也能将负载转移到非接触表面,为此,大幅度地提高了产品本身的耐冲击性;容易精确测量轨道的各项精度,从而稳定地生产高精度直线导轨。 主要用于加工中心、数控铣床、数控车床、平面磨床、座标磨床、工艺机器人、电火花加工机床等等对精度要求较高或对刚性要求较高的机床。 微型(LM/LMW) 左右各1列滚道的精巧设计,体积小、轻量化;沟槽设计为哥特式结构,其接触角均为45°,因而上下左右四个方向都具有均等的刚性和负载能力;LMW系列由于导轨幅度宽,在横向扭矩方面具有高刚性和大负载能力,满足单根使用的各种装置。在有限的空间内优化设计,尽可能大地用大直径的钢球,以提高其刚性及负载能力。 主要用于半导体制造设备、印刷电路板IC组装设备、医疗设备、机械手臂、精密测量仪器、光学平台。 单圆弧型(LGS) 采用DF结构,对安装误差的吸收能力大;将滚珠和沟槽之间的接触角度设定为45°,使上下左右四方向负载的承受能力均匀,并且各方向都具有足够的刚性;采用新型的双唇密封端盖,比传统的密封端盖更能提高防尘和防污染物的能力;增加顶密封装置,使导轨副形成了全封闭型的有效密封,使顶部形成双保险;为适应更恶劣的使用环境,使用新型不锈钢防护带保护导轨的顶面并封闭导轨的安装孔,使密封效果更加完美。 主要用于木工机械、材料供给装置系统、电火花加工机床、激光加工机械、光学机械测量台、轻工机械设备等,特别适用于密封要求严格或安装基础误差较大的场合。 滚柱型(LGR) 以圆柱滚子代替钢球,滚子与导轨、滑块为线接触,在承受高负荷时仅仅形成微小的弹性变形,大幅提高导轨的刚性值;采用DB45°组合,能承受上下左右四方向等载荷,并且各方向都具有超高的承载能力和刚性;专用导轨磨床实现三面同时磨削,使产品具有极高的精度;滑块两端装有密封端盖,滑块内部和底部装有密封底片,具有优异的防尘性能,从而保证了产品的使用寿命,为适应更恶劣的使用环境,可选择不锈钢防护带板和安装双层密封端盖。 主要用于加工中心、NC车铣床、NC复合加工机床、磨床、立式或卧式镗、铣床和各大型落地数控镗铣、龙门式加工中心等大、重型机床,特别适合超高精度、超重负荷或高速机床等高档机床使用。

导轨的设计原则

1.运动灵敏度和定位精度 运动灵敏度是指运动构件能实现的最小行程;定位精度是指运动构件能按要求停止在指定位置的能力。运动灵敏度和定位精度与导轨类型、摩擦特性、运动速度、传动刚度、运动构件质量等因素有关。 2.运动平稳性 直线运动导轨的几何精度一般包括:垂直平面和水平平面内的直线度;两条导轨面间的平行度。导轨几何精度可以用导轨全长上的误差或单位长度上的误差表示。 导轨运动平稳性是指导轨在低速运动或微量移动时不出现爬行现象的性能。平稳性与导轨的结构、导轨副材料的匹配、润滑状况、润滑剂性质及导轨运动之传动系统的刚度等因素有关。 3.抗振性与稳定性 抗振性是指导轨副承受受迫振动和冲击的能力,而稳定性是指在给定的运转条件下不出现自激振动的性能。 4.刚度 导轨抵抗受力变形的能力。变形将影响构件之间的相对位置和导向精度,这对于精密机械与仪器尤为重要。导轨变形包括导轨本体变形导轨副接触变形,两者均应考虑。 2.精度保持性 精度保持性是指导轨工作过程中保持原有几何精度的能力。导轨的精度保持性主要取决于导轨的耐磨性极其尺寸稳定性。耐磨性与导轨副的材料匹配、受力、加工精度、润滑方式和防护装置的性能的因素有关,另外,导轨及其支承件内的残余应力也会影响导轨的精度保持性。

导轨出故障解决方法

目前针对机床导轨的划伤、拉伤问题可以采用高分子复合材料解决,其中应用成熟的有美嘉华技术体系。由于材料具有出色的粘着力、抗压强度及耐油、耐磨性能,可为部件提供一个长久的保护层。 工业用导轨大都由钢或铸铁制成,在长期的使用过程中,由于两个接触面间存在不同程度的摩擦,会造成导轨表面产生不同程度的划伤及拉伤,严重影响设备的加工精度和生产效率。传统修复方法通常采用金属板镶贴或更换等方法,但需要进行大量精确的加工制造和人工刮研,修复需要的工序多,工期长。

直线导轨的六不要

1.请注意防止衣物、切屑等异物的进入。否则,可能导致钢球循环部件的破损、功能损坏。 2.要在冷却剂可能进入LM滑块内部的环境下使用LM系统时,由于某些种类的冷却剂会影响产品性能, 3.请避免在超过80℃的条件下使用。要超过80℃使用时, 4.垃圾、锯粉等异物附着时,请在清洗后重新封入润滑剂。有关可用清洁剂的种类, 5.要在逆向吊装状态下使用LM滚动导轨时,请采取对应措施,如添加防止落下的安全机构等。否则,可能引起导致端板破损,使钢球脱落,LM滑块从LM轨道上脱落掉下等事故。   6.要在经常产生振动的场所、无尘室、真空、低温或高温等特殊环境下使用时。

直线导轨的性能特点

1.适应高速运动且大幅降低驱动功率。采用滚动直线导轨的机床由于摩擦阻力小,可使所需的动力源及动力传递机构小型化,使驱动扭矩大大减少,使机床所需电力降低80%,节能效果明显。可实现机床的高速运动,提高机床的工作效率20~30%。 2.承载能力强。滚动直线导轨副具有较好的承载性能,可以承受不同方向的力和力矩载荷,如承受上下左右方向的力,以及颠簸力矩、摇动力矩和摆动力矩。因此,具有很好的载荷适应性。在设计制造中加以适当的预加载荷可以增加阻尼,以提高抗振性,同时可以消除高频振动现象。 而滑动导轨在平行接触面方向可承受的侧向负荷较小,易造成机床运行精度不良。 3.组装容易并具互换性。传统的滑动导轨必须对导轨面进行刮研,既费事又费时,且一旦机床精度不良,必须再刮研一次。滚动导轨具有互换性,只要更换滑块或导轨或整个滚动导轨副,机床即可重新获得高精度。 4.定位精度高。滚动直线导轨的运动借助钢球滚动实现,导轨副摩擦阻力小,动静摩擦阻力差值小,低速时不易产生爬行。重复定位精度高,适合作频繁启动或换向的运动部件。可将机床定位精度设定到超微米级。同时根据需要,适当增加预载荷,确保钢球不发生滑动,实现平稳运动,减小了运动的冲击和振动。 5.磨损小。对于滑动导轨面的流体润滑,由于油膜的浮动,产生的运动精度误差是无法避免的。在绝大多数情况下,流体润滑只限于边界区域,由金属接触而产生的直接摩擦是无法避免的,在这种摩擦中,大量的能量以摩擦损耗被浪费掉了。与之相反,滚动接触由于摩擦耗能小,滚动面的摩擦损耗也相应减少,故能使滚动直线导轨系统长期处于高精度状态。同时,由于使用润滑油也很少,这使得在机床的润滑系统设计及使用维护方面都变的非常容易。

滚珠丝杠与直线电机通过几个性能相比较

1.能耗比较: 直线电机在提供同样转矩时的能耗是“旋转伺服电机+滚珠丝杠”一倍以上,“旋转伺服电机+滚珠丝杠”属于节能、增力型传动部件,直线电机可靠性受控制系统稳定性影响,对周边的影响很大必须采取有效隔磁与防护措施,隔断强磁场对滚动导轨的影响和对铁屑磁尘的吸附。 2.应用比较: 事实上,直线电机和“旋转伺服电机+滚珠丝杠”两种驱动方式尽管各有优势,但也有自身的软肋。两者在数控机床上都有各自最佳的适用范围。 3.速度比较: 速度方面直线电机具有相当大的优势,直线电机速度达到300m/min,加速度达到10g;滚珠丝杠速度为120m/min,加速度为1.5g。从速度上和加速度的对比上,直线电机具有相当大的优势,而且直线电机在成功解决发热问题后速度还会进一步提高,而“旋转伺服电机+滚珠丝杠”在速度上却受到限制很难再提高较多。从动态响应上因为运动惯量和间隙以及机构复杂性等问题直线电机也占有绝对的优势。 速度控制上直线电机因其响应快,调速范围更宽,可以实现启动瞬间达到最高转速,高速运行时又能迅速停止。调速范围可达到1:10000。

单轴机器人的结构、特点和优势

结构: 单轴机器人的总体为龙门式框架结构组成,按照加工工件生产工艺要求,可以将多台加工设备(加工中心或者数控设备)并成一个独立的自动化生产线,完成工件的自动化,批量化生产,能够很好的提高生产效率及产品质量。按照龙门跨度的长短,在两端立柱之间适当增加中间立柱。立柱位置一般跨度4米为宜。龙门式框架的布置,可以适当多添加机械手或其它加工设备组合在同一加工单元内来满足加工要求,提高生产效率。 优势: 1.运动部件直线运行,最大运行行程可达50米左右。 2.运行速度达到0.5米每秒,速度比机床运行快4-5倍。 3.加速度可以达到9米每秒。 4.重复定位精度高达正负0.02MM。完全能满足广大自动加工设备的定位精度要求。 5.立体龙门式架构空间,点地面积少,维护方便。 特点: 单轴机器人是结合了计算机,控制论,机构学,信息和传感技术,人工智能等多学科而结合的高新技术产品。是可以进行自动控制的,可以反复编程的,多功能的,多自由度的,多用途的操作设备。现在国内很多企业用人成本不断增加,用工慌,桁架式单轴工业机器人在生产制造中可以实现规模化生产,减少工人的体力劳动,提高产品质量有鲜明的优势,还可以在高温,有毒等恶劣的生产环境代替人工无法解决的工作。

联轴器在风机中的应用

为提高职工的主观能动性和自身的素质,保证生产工艺稳定在较高水平上运行。车间在焦结热工和冷凝大主要工序上开展岗位竞赛,拨专款。实施内部考核次分配。极大地调动了岗位操作积极性。焦结炉进口温度合格率长期保持在99.7以上。焦结矿质量合格率达到9275.热工大炉温度合格率完成99.3,上料温度合格率完成99.89;直管温度和热工燃烧室温度241合格率稳定在85和99以上。对提高冷凝效率降低残渣含锌起到重要作用。 ⑤偏差调整的特定步骤。 第步垂直方向上的角度误差通过垫片进行调整,调整时不会影响其它偏差3第步垂直方向上的同轴度偏差亦通过甩片进行调整,当垂直方向上同时存在角度偏差时,不能进行该同轴度偏差的调整31. 第步水平方向的角度调整此项调整应1述两步调整后进行,以避免受到影响3c,7尺平方向上的角度偏差水平方向上的同轴度偏差第步水平方向上的同轴度偏差当水平面上还存角度误差不能调整该轴度偏差。并应说每次调。整。+管是,减垫片。还是移动电机或抒紧螺栓,均要记录组千分读数。 ⑩在之上的点位置将千分置零将引风机轴与电机轴起旋转。,转动90.记皮两个千分对位置不变即可消除由轮缘或端面不规则造成的偏差为保证说服力,应多测几组腿,5点为0.15而。说明电机沾部高相对风机而,忍的角泛偏差为。15;电机所需调整的距离计算如下。先测允度千分探针的转直径价比轮毂直径稍小,假定乃=15,以及电机前后两个固定螺栓的距离假定将电机撬起并从电机尾部支脚上取出厚度为0.761的垫片,按4的顺序均匀地拧紧固定螺拎。 9,切步骤,重新检查难直方1上的扣度偏差,记录千分的读数,注意调整后电机轴可能高于或低于引风机轴,但这不会影响角度偏差的计算。如果该偏差符合要求,明校准的第步己经完成两轴在垂直方向上己经平行。 卟说明电机比引风机低总的角度偏差为0.2,电机所需调整的距离为同轴度1被电机的付个脚上加0.10,1厚的垫。然后按4的顺序均匀地拧紧固定螺栓。 步骤重新检查垂直方向上的同轴度偏差,记录千分的读数,如果该偏差符合要求,明校准的第步己经完成,两轴在垂直方向上己经平行同心。 ⑩平面上的角度偏差在点为扣!点为+0.说明电机在引风机的顺时针方让存正的角度偏差,总的偏是晴为0.20仙1按照,步骤中计算垂直方向角度偏差的方法,计算出水平方向的角度偏羞此时从水平面的角度偏差,5=电机脚需要摆动的距离5=760用千斤顶把点顶住,转动点的千斤顶,按3,箭头方向,动屯机。,动距离为1.1.然后按4的顺序均匀地抒紧固定螺栓。 照,骤,重新检查水平方向上的角度偏差,记录千分的读数,如果该偏差符合要求,水平方向上己平行。 水平方向上同轴度偏差在点为0.15,点为+0.15说明电机在方向上与引风机有偏差,总的同轴度偏差为0.30,电机,斤纶调整的距离为同轴度偏差的12,即。15每螺旋千斤顶放置在34中的,点处,同时转动千斤顶,按31方向移动电机,移动距离0.15,然后按4的顺序均匀地拧紧固定螺栓。 重新检查水平方向上的同轴度偏差,记录千分的读数,如果该偏差符合要求,明校准的第步己经完成,说明电机轴上下左右均己与引风机轴对齐。

你必须了解的工业机器人这五大方面知识和技术

目前,中国工业机器人的使用主要集中在汽车工业和电子电气工业,弧焊机器人、点焊机器人、搬运机器人等在生产过程中被大量采用。想搞工业机器人,那这五大方面知识和技术你必须了解。 1.工业机器人控制系统体系结构 在控制器体系结构方面,其研究重点是功能划分和功能之间信息交换的规范。在开放式控制器体系结构研究方面,有两种基本结构,一种是基于硬件层次划分的结构,该类型结构比较简单,在日本,体系结构以硬件为基础来划分,如三菱重工株式会社将其生产的PA210可携带式通用智能臂式机器人的结构划分为五层结构;另一种是基于功能划分的结构,它将软硬件一同考虑,其是机器人控制器体系结构研究和发展的方向。 2.工业机器人控制系统硬件结构 控制器是机器人系统的核心,国外有关公司对我国实行严密封锁。近年来随着微电子技术的发展,微处理器的性能越来越高,而价格则越来越便宜,目前市场上已经出现了1-2美金的32位微处理器。高性价比的微处理器为机器人控制器带来了新的发展机遇,使开发低成本、高性能的机器人控制器成为可能。为了保证系统具有足够的计算与存储能力,目前机器人控制器多采用计算能力较强的ARM系列、DSP系列、POWERPC系列、Intel系列等芯片组成。此外,由于已有的通用芯片在功能和性能上不能完全满足某些机器人系统在价格、性能、集成度和接口等方面的要求,这就产生了机器人系统对SoC(SystemonChip)技术的需求,将特定的处理器与所需要的接口集成在一起,可简化系统外围电路的设计,缩小系统尺寸,并降低成本。例如,Actel公司将NEOS或ARM7的处理器内核集成在其FPGA产品上,形成了一个完整的SoC系统。在机器人运动控制器方面,其研究主要集中在美国和日本,并有成熟的产品,如美国DELTATAU公司、日本朋立株式会社等。其运动控制器以DSP技术为核心,采用基于PC的开放式结构。 3.机器人专用操作系统 (1).VxWorks,VxWorks操作系统是美国WindRiver公司于1983年设计开发的一种嵌入式实时操作系统(RTOS),是Tornado嵌入式开发环境的关键组成部分。VxWorks具有可裁剪微内核结构;高效的任务管理;灵活的任务间通信;微秒级的中断处理;支持POSIX1003.1b实时扩展标准;支持多种物理介质及标准的、完整的TCP/IP网络协议等。 (2).WindowsCE,WindowsCE与Windows系列有较好的兼容性,无疑是WindowsCE推广的一大优势。WindowsCE为建立针对掌上设备、无线设备的动态应用程序和服务提供了一种功能丰富的操作系统平台,它能在多种处理器体系结构上运行,并且通常适用于那些对内存占用空间具有一定限制的设备。 (3).嵌入式Linux,由于其源代码公开,人们可以任意修改,以满足自己的应用。其中大部分都遵从GPL,是开放源代码和免费的。可以稍加修改后应用于用户自己的系统。有庞大的开发人员群体,无需专门的人才,只要懂Unix/Linux和C语言即可。支持的硬件数量庞大。嵌入式Linux和普通Linux并无本质区别,PC上用到的硬件嵌入式Linux几乎都支持。而且各种硬件的驱动程序源代码都可以得到,为用户编写自己专有硬件的驱动程序带来很大方便。 (4).μC/OS-Ⅱ,μC/OS-Ⅱ是著名的源代码公开的实时内核,是专为嵌入式应用设计的,可用于8位,16位和32位单片机或数字信号处理器(DSP)。它的主要特点是公开源代码、可移植性好、可固化、可裁剪性、占先式内核、可确定性等。 (5).DSP/BIOS,DSP/BIOS是TI公司特别为其TMS320C6000TM,TMS320C5000TM和TMS320C28xTM系列DSP平台所设计开发的一个尺寸可裁剪的实时多任务操作系统内核,是TI公司的CodeComposerStudioTM开发工具的组成部分之一。DSP/BIOS主要由三部分组成:多线程实时内核;实时分析工具;芯片支持库。利用实时操作系统开发程序,可以方便快速的开发复杂的DSP程序。 4.控制软件开发环境 在机器人软件开发环境方面,一般工业机器人公司都有自己独立的开发环境和独立的机器人编程语言,如日本Motoman公司、德国KUKA公司、美国的Adept公司、瑞典的ABB公司等。很多大学在机器人开发环境(RobotDevelopmentEnvironment)方面已有大量研究工作,提供了很多开放源码,可在部分机器人硬件结构下进行集成和控制操作,目前已在实验室环境下进行了许多相关实验。国内外现有的机器人系统开发环境有TeamBots,v.2.0e、ARIA,V.2.4.1、Player/Stage,v.1.6.5.1.6.2、Pyro.v.4.6.0、CARMEN.v.1.1.1、MissionLab.v.6.0、ADE.V.1.0beta、Miro.v.CVS-March17.2006、MARIE.V.0.4.0、FlowDesigner.v.0.9.0、RobotFlow.v.0.2.6等等。从机器人产业发展来看,对机器人软件开发环境有两方面的需求。一方面是来自机器人最终用户,他们不仅使用机器人,而且希望能够通过编程的方式赋予机器人更多的功能,这种编程往往是采用可视化编程语言实现的,如乐高MindStormsNXT的图形化编程环境和微软RoboticsStudio提供的可视化编程环境。 5.机器人伺服通信总线技术 目前国际上还没有专用于机器人系统中的伺服通信总线,在实际应用过程中,通常根据系统需求,把常用的一些总线,如以太网、CAN、1394、SERCOS、USB、RS-485等用于机器人系统中。当前大部分通信控制总线可以归纳为两类,即基于RS-485和线驱动技术的串行总线技术和基于实时工业以太网的高速串行总线技术。

伺服驱动器的注意事项

伺服驱动器注意事项 1、用户提供电源,DC12-24DC,电流≥100mA,如果电流极性接反,驱动器将不能工作。 2、采用屏蔽电缆时,线径≥0.12mm 2  (AWG24-26),屏蔽层需接地。 3、电缆长度尽可能短,控制CN1电缆不超过3米,反馈信号CN2电缆长度不超过20米。 4、建议采用三相隔离变压器供电,减少电击伤人的可能性;可以考虑增加电源滤波器,提高抗干扰能力。 5、如果负载是继电器等电感性负载,必须在负载两端反并联续流二极管;如果续流二极管反接,可能会损坏驱动。 6、请尽量安装非熔断型断路器使驱动器故障时能及时切断外部电源。 7、采用单端驱动方式,会使频率降低。 交流伺服驱动器作为现代工业自动化与运动控制的支撑性技术之一,由于其高速控制精准、调速范围广、动态特性和效率高,广泛应用于机床、印刷设备、包装设备、纺织设备、橡塑设备、电子半导体、风电/太阳能等新能源以及机器人、自动化生产线等领域。

滚珠丝杆在模组中的相关应用

滚珠丝杆是是将回转运动转化为直线运动,或将直线运动转化为回转运动的理想的产品,它由于具有很小的摩擦阻力,滚珠丝杆被广泛应用于各种工业设备和精密仪器。 滚珠丝杆在模组中的应用特点有: 1.适应高速运动 采用滚动直线导轨的模组由于摩擦阻力小,可使所需的动力源及动力传递机构小型化,使驱动扭矩大大减少。可实现高速直线运动,提高机床的工作效率 2.承载能力强 滚动直线导轨具有较好的承载性能,可以承受不同方向的力和力矩载荷,如承受上下左右方向的力,以及颠簸力矩、摇动力矩和摆动力矩。因此,具有很好的载荷适应性。 3.可实现微量及高速进给: 滚珠丝杆副不会产生如滑动现象,能实现微量进给;只要进给脉冲足够小,滚珠丝杆副可实现微米级进给。 4.高寿命: 滚珠丝杆副之螺母,丝杆硬度均达到HRC58-62,滚珠硬度达到HRC62-66,且他们之间是滚动摩擦,故可实现较高的疲劳寿命和精度寿命。

手动滑台的特点

手动滑台模组主要应用在工装夹取、定位、自动化工作站、移栽、半导体设备以及机械内部XYZ轴工作平台、点胶、锁螺丝、视觉检测、量测设备等高速高精度等场所。 1.定位精度高:采用滚动结构,摩擦小,定位精度高,可长期使用。由手动检测平台标准位置按一定方向依次进行定位,然后在各自的位置上,根据标准位置,测定实际移动距离和应移动距离之间的差。反复测试7次,然后求它们的平均值。测试几乎包括整个移动距离,机型不同时,则应按照各机型规定的测试间隔进行测试,将由各自位置得出的平均值最大值作为测定值。 2.选择多元化:可根据客户的行业来选配:塑胶手轮、折叠型手轮和铝合金手轮。可通过手轮加装角度尺、位置显示器、转数计数器或重力指示器。通过手轮和单头、多头或左右对开的梯形牙丝杆传动。滑台与底座框架可搭配指示尺和指示板来來检测工件精度。 3.免维护保养:滑块,直线导轨部位为标准件。能够在通常的运行条件下,使用5年或运行10000km而不用维护保养。若能按照规定方法补充润滑脂,则能使用寿命更长。 4.结构与特长:滑动台和基座采用A6063S-T5铝合金材质、高刚性、高精度、价格低、体积小、重量轻、铝合金结构、模组化设计、滑动台和底座经过阳极处后装入直线导轨,基座与滑动台搭配,实现了高刚性和负载容量。对负载负荷的变位量小,用于搭载的 质量或外部负载变动的用途也能依然保持高稳定性。

手动滑台的优势

手动滑台模组主要应用在工装夹取、定位、自动化工作站、移栽、半导体设备以及机械内部XYZ轴工作平台、点胶、锁螺丝、视觉检测、量测设备等高速高精度等场所。 1.定位精度高:采用滚动结构,摩擦小,定位精度高,可长期使用。由手动检测平台标准位置按一定方向依次进行定位,然后在各自的位置上,根据标准位置,测定实际移动距离和应移动距离之间的差。反复测试7次,然后求它们的平均值。测试几乎包括整个移动距离,机型不同时,则应按照各机型规定的测试间隔进行测试,将由各自位置得出的平均值最大值作为测定值。 2.免维护保养:滑块,直线导轨部位为标准件。能够在通常的运行条件下,使用5年或运行10000km而不用维护保养。若能按照规定方法补充润滑脂,则能使用寿命更长。 3.选择多元化:可根据客户的行业来选配:塑胶手轮、折叠型手轮和铝合金手轮。可通过手轮加装角度尺、位置显示器、转数计数器或重力指示器。通过手轮和单头、多头或左右对开的梯形牙丝杆传动。滑台与底座框架可搭配指示尺和指示板来來检测工件精度。 4.结构与特长:滑动台和基座采用A6063S-T5铝合金材质、高刚性、高精度、价格低、体积小、重量轻、铝合金结构、模组化设计、滑动台和底座经过阳极处后装入直线导轨,基座与滑动台搭配,实现了高刚性和负载容量。对负载负荷的变位量小,用于搭载的 质量或外部负载变动的用途也能依然保持高稳定性。

机器人设计中用步进电机的优点有哪些?

步进电机低速大扭矩设备,使传输更短这意味着更高的可靠性,更高的效率,更小间隙和更低的成本。正是这一特点,使得步进理想的机器人,因为大多数机器人运动是短距离要求高加速度达到低点的循环周期。 功率-重量比高于直流电动机低。大多数机器人运动是不是长距离高速(因此高功率),但通常包括短距离的停止和启动。在低转速高扭矩他们是理想的机器人。 步进电机定位装置,所以不能有错误的工作,例如过度的负荷下不会放缓,但将停止。它们不能被用来发挥独立的位置的力。 机器人是位置的设备,旨在进入精确位置没有错误。在一档或碰撞时看门狗编码器报告错误并停止进一步的动作的机器人。 机器人设计中选用用步进电机的优点: 1 对于同等性能的步进电机更便宜 2 步进电机是无刷电机等有更长的寿命。 3 作为数字马达就可以准确地定位不打猎或过冲。 4 驱动模块不是线性放大器这意味着更少的散热片,更高的效率,更高的可靠性。 5 驱动模块比线性放大器比较便宜。 6 没有昂贵的伺服控制的电子元件,因为信号直接从MPU起源。 7 软件故障安全。主控板问题步进脉冲。如果该软件无法工作或崩溃电机停止。 8 电子驱动器故障 – 安全。如遇驱动放大器故障的电机锁固,将无法运行。当伺服驱动器发生故障的电机仍然可以运行,可能在全速运转。 9 速度控制精确和可重复的(晶体控制)。 10 如果需要,步进电机运行极为缓慢。

自动化机械手与工业机械手的区别

自动化机械手与工业机械手都是属于机械手的范围的,都是用于加工生产。 根据自动化机械手及自动生产线在国民经济各行业应用的情况,具有以下一些特点。 1.原材料多样化 第一大类是包括机械加工、轻工机械等以金属材料作为加工的原料,如钟表、缝纫机、自行车和家用电器等的加工。 第二大类是以农、林、牧、副及化工产品等作为加工的原料,如食品机械中的糕点机械以农产品为主要原料;罐头、酿造机械以农、副产品为主要加工原料;制浆造纸机械以林产品和农副产品为原材料;皮革机械以畜牧产品为主要原料;陶瓷、玻璃、则以矿物、化工产品为其原料。其表明自动化机械手及自动生产线应用领域广泛。 2.自动化机械手及自动生产线工艺种类多样化; 1)完成机械作用的有金属切削、装配。 2)完成物理作用的有烟草。 3)完成作用的有发酵。 4)完成电化学作用的有电镀与电腐蚀。 5)完成化学作用的有造纸机械中的蒸煮、灯泡机械中的熔炼。 3.门类繁多,结构多样化 工业门类多,使用的机械因行业、加工的产品、功能与作用的不同,因而在原理与运动机构上有着很大差异,甚至完成同一职能的也会有不同的工作原理与不同的机构。如机械加工生产线加工同一种产品可以使用不同的设备,应用到的自动化机械手与自动生产线也有所不同;有着各种不同的工艺原理和结构;灯泡绕丝机因工艺原理的不同,有无芯、有芯连续和有芯不连续绕丝机之分。 4.产品量大、自动化程度高 工业产品为人民日常生活所必需,因而要求成批大量生产,也就必然要求广泛采用半自动化、自动化的机械手,随之自动生产线的应用也日益广泛。 5.机械手往往具有动作复杂、机构运动速度高、涉及学科领域广、更新换代快等特点。 工业机械手是:能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。 工业机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。 在现代生产过程中,机械手被广泛的运用于自动生产线中,机器人的研制和生产已成为高技术领域内,迅速发展起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。 机械手虽然还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 自动化机械手由5大部分组成: 驱动系统:它是自动机械手的动力来源,可以是电动机驱动、液压驱动、气压驱动等。 传动系统:它的功能是将运动和动力传递给各种执行机构,以便完成自动化机械手的工艺操作,同时也将运动传给辅助机构完成辅助动作。其中包括皮带传动、齿轮传动机构等。 执行机构:它是实现自动化操作与辅助操作的部分,其动作顺序与运动规律依工艺原理和要求而定。 控制系统:它的功能是控制机器的驱动系统、传动系统、执行机构,将运动分配给各执行机构,使它们按时、按顺序进行协调动作。 检测系统:它的功能是对自动化机械手的位置、行程、速度、压力、流量等进行检测并反馈给控制系统。

工业机器人控制系统的性能

2016年,不简单!在这一年,机器人行业实现了快速的发展。从猴年央视春节晚会上大放异彩的机器人舞蹈到现在遍地开花的各大机器人操作系统、控制系统企业,从全国各地的机器人大会、机器人论坛到机器人与互联网运营、大数据等新兴技术的结合,我们惊奇的发现,机器人早已不是过去那个只会重复体力劳动的“大笨熊”,而是越发的智能化和个性化。 现在,越来越多的机器人进入那些“百姓”企业,企业在欢庆的同时,也盘算着自己心里的“小九九”——机器人的控制系统性能如何呢? 在机器人行业,提到性能规范,一般是针对整机而言。评价工业机器人整机性能的指标有很多,基于不同的的设计目的以及用途,其整机配件搭配、结构设计以及参数调整也有所差异,控制系统只是其中的一个环节,发动机(伺服电机)、变速箱(减速器)、底盘/悬挂(结构件)等对机器人整体的性能都有很大的影响。 一般来说,工业机器人控制系统的性能可以由机器人的位姿精度和轨迹精度来间接表示。 位姿精度(PoseAccuracy) 机器人的位姿精度一般指位姿重复度。 机器人的位姿是指机器人相对于某一参考坐标系的位姿,其重复位姿精度是机器人的一项最重要的技术指标,该指标集中反映机器人的机电性能和使用效果,即机器人对同一指令位姿从同一方向重复响应n次后实到位姿的一致程度。一般采用激光跟踪仪进行位姿精度的测量,如下图所示: 想要达到较高的位姿精度,需要控制系统提供以下功能: 补偿机械连杆的运动学参数误差,如连杆加工误差、装配误差、机械公差等; 补偿关节柔性及连杆柔性; 提供高精度的机械零点标定功能。 轨迹精度(PathAccuracy) 机器人的轨迹精度,一般是指轨迹重复精度,表示机器人对同一轨迹指令重复n次时实到轨迹的一致程度。一般也采用激光跟踪仪进行测试,让机器人重复走某一条轨迹n次,然后取由n条轨迹组成的轨迹条横切面的半径。如下图所示:

机器人由哪些部件构成?

机器人作为一个系统,它由如下部件构成: 机械手或移动车:这是机器人的主体部分,由连杆,活动关节以及其它结构部件构成,使机器人达到空间的某一位置。如果没有其它部件,仅机械手本身并不是机器人。

直角坐标机器人的主要特点和选型

直角坐标机器人主要由一些直线运动单元,驱动电机,控制系统和末端操纵器组成。针对不同的应用,可以方便快速组合成不同维数,不同行程和不同带载能力的壁挂式、悬臂式、龙门式或倒挂式等各种形式的直角坐标机器人。从简单的二维机器人到复杂的五维机器人就有上百种结构形式的成功应用案例。从食品生产到汽车装配等各行各业的自动化生产线中,都有各式各样的多台直角坐标机器人和其它设备严格同步协调工作。 可以说直角坐标机器人几乎能胜任几乎所有的产业自动化任务。下面是其主要特点: 1.任意组合成各种结构样式,带载能力和尺寸的机器人。 2.采用多根直线运动单元级连和齿轮齿条传动,可以形成几十米的超大行程机器人。 3.采用多根直线运动单元平连或带多滑块结构时其负载能力可增加到数吨。 4.其最大运行速度可达到每秒8米,加速度可达到每秒4米。 5.重复定位精度可达到0.05mm~0.01mm。 6.采用带有RTCP功能的五轴或五轴以上数控系统能完成非常复杂轨迹的工作。 直角坐标机器人的选型 1.机器人结构形式选择 根据前面“使用要求分析”中获得的信息资料来选择机器人的结构形式。原则上尽可能选择龙门式直角坐标机器人,但有时受工作空间限制必须选择悬臂式。在食品搬运和玻璃切割等项目中会产生大量粉末,伤害运动轴里面的导轨,此时最好采用悬挂式机器人。有时根据负载及运动间隔和空间限制必须选用挂臂式。根据机器人的工作任务来确定负载的运动位置精度要求,要考虑减速时晃动产生的位置误差。根据机器人的工作任务及其工作空间上的限制来确定运动轴数目及各自运动行程。 2.规划运动轨迹及计算运动速度 根据机器人的工作任务和空间限制来规划运动轨迹。尽可能减少运动间隔,对工作周期要求严的应用要尽可能运用多轴同时运动来减少运动时间和降低运动速度。抓取负载后运动速度要低,空载返回原始点时要快。负载大时加速度和减速度要小,尽可能避免产生巨大的冲击力。根据上面的原则给出各段运动的速度,加速度和减速度。各个运动段间尽可能平稳变速以保证工作周期,减少冲击力和运行噪音。在运动速度分配时要充分考虑各个运动过程与其它设备间的同步协调时间,而且规划的运动时间要比用户要求的时间短些。 3.受力分析 根据速度分析得出各个轴的最大加速度和减速度。然后再计算出多轴同时运动时产生的合成最大减速度。选择独立运动的减速度和同时运动时合成减速度二者中大的减速度,根据这个最大的减速度计算出XYZ三个方向的最大冲击力Fx,Fy和Fz及产生的最大扭曲力矩Mx,My和Mz。在计算不同轴扭曲力矩Mx,My和Mz时要考虑等效负载的重心位置,总重力和减速时产生的冲击力。 4.变形分析 绕度形变仅在大跨度悬空方式下,而且受力很大的情况下才发生。其绕度形变量的计算方法见下面的公式。 f=(F×L3)/(E×I×192) f:挠度形变(mm)f≤1mm F:负载压力(N) L:导轨长度(mm) E:弹性模量(70,000N/mm2) I:面积平方(mm4) 在很多任务中可以答应在运动中有一定量的变形,但在玻璃切割机等数控设备类的应用中是不答应产生变形的。 1.使用要求分析 对于选型的职员首先要有物理运动学基础,材料力学基础,伺服驱动使用和数控系统的应用经验,但最主要是把题目和要求等介绍很清楚。对于简单任务和有经验的工程师通过电话和邮件就可以沟通好,而对复杂的任务要到现场双方共同分析和制定任务描述,给出具体公道的要求。 下面是主要的数据和信息: 机器人的工作任务, 手抓和负载的总重量, 一个完整的工作周期是多少秒,可能分解成的子运动及对应的时间, 运动和取抓过程中与其它设备的同步/握手要求, 各个运动轴的有效运动长度及答应的最大运行速度, 机器人工作四周空间上的限制, 使用环境有粉末,高温,湿度等特殊防护要求。 2.选择驱动电机 根据直线定位单元驱动轴的最高转速来选择驱动电机。当驱动轴的最高转速低于600转/分时通常选用步进电机,否则要选用交流伺服电机。但交流伺服电机的最高转速不要超过3000转/分,否则影响其寿命。 当选用步进电机做驱动轴时,其负载的转动惯量与步进电机的转动惯量比要小于12,当选用伺服电机做驱动轴时,其负载的转动惯量与伺服电机的转动惯量比要小于8,否则影响其高动态特性。但转动惯量比大于上面的数值时,要加减速机。在不超过驱动电机最高转速限制情况下,要尽量选择大减速比的减速机。为了保证高的动态特性,保证在约定的时间内完成任务,驱动电机的最大出力要比理论计算值至少高出85%。通常所选择的驱动电机的最大出力要比理论计算值至少高出100%,而转动惯量比要小于5。 3.确定机器人的结构及各个运动轴 根据上面6个方面的信息和数据就可以终极选定机器人的结构形式及每个运动轴的具体型号和长度等,通常我们能从图片库中找出同样结构的照片,这里的照片是指CAD图或以往用户机器人的照片。还要设计好各个轴间的连接板,不仅要考虑机械方面的装配配合精度,材料的物理强度,连接螺丝杆的拉力等,更要考虑在主要受冲击方向加大加强连接板,必要时增加连接板。主要螺丝杆和螺丝帽要加胶,以防长期振动后变松动。 机器人在加速和减速时会产生强大的冲击力,而且通常天天要工作24小时,所以机器人必须被牢固地安装在支架上。机器人的支架要有足够的抗冲击力,要有地脚,以保证在长期高速高动态运动冲击下,没有任何晃动。此外在安装时要保证运动轴间的平行度、平面度和垂直度。 4.选择末端操纵器——手爪系统 根据其具体应用情况,其手爪系统可能是气动吸盘,气动夹取手爪,电动夹取手爪,电磁吸取手爪,焊枪,胶枪,专用工具和检测仪器等。在很多场合可以一次抓取多个工件。

滚珠丝杆的选型方法

丝杠的选型范例 1.设定螺距(L) 根据马达的最大转速与快速进给速度     2.计算基本动额定负载 范例所需基本动额定负载与容许转速(DmN值)的各动作模式下的轴向负载的计算                                             A.加速时                                             轴向负载(Pa)=Wα+μWg≈343(N)    …

Read More

机器人的原理详解

机器人的定义范围很广,大到工厂服务的工业机器人,小到居家打扫机器人。按照目前最宽泛的定义,如果某样东西被许多人认为是机器人,那么它就是机器人。许多机器人专家(制造机器人的人)使用的是一种更为精确的定义。他们规定,机器人应具有可重新编程的大脑(一台计算机),用来移动身体。 根据这一定义,机器人与其他可移动的机器(如汽车)的不同之处在于它们的计算机要素。许多新型汽车都有一台车载计算机,但只是用它来做微小的调整。驾驶员通过各种机械装置直接控制车辆的大多数部件。而机器人在物理特性方面与普通的计算机不同,它们各自连接着一个身体,而普通的计算机则不然。 大多数机器人确实拥有一些共同的特性 首先,几乎所有机器人都有一个可以移动的身体。有些拥有的只是机动化的轮子,而有些则拥有大量可移动的部件,这些部件一般是由金属或塑料制成的。与人体骨骼类似,这些独立的部件是用关节连接起来的。 机器人的轮与轴是用某种传动装置连接起来的。有些机器人使用马达和螺线管作为传动装置;另一些则使用液压系统;还有一些使用气动系统(由压缩气体驱动的系统)。机器人可以使用上述任何类型的传动装置。 其次,机器人需要一个能量源来驱动这些传动装置。大多数机器人会使用电池或墙上的电源插座来供电。此外,液压机器人还需要一个泵来为液体加压,而气动机器人则需要气体压缩机或压缩气罐。 所有传动装置都通过导线与一块电路相连。该电路直接为电动马达和螺线圈供电,并操纵电子阀门来启动液压系统。阀门可以控制承压流体在机器内流动的路径。比如说,如果机器人要移动一只由液压驱动的腿,它的控制器会打开一只阀门,这只阀门由液压泵通向腿上的活塞筒。承压流体将推动活塞,使腿部向前旋转。通常,机器人使用可提供双向推力的活塞,以使部件能向两个方向活动。 机器人的计算机可以控制与电路相连的所有部件。为了使机器人动起来,计算机会打开所有需要的马达和阀门。大多数机器人是可重新编程的。如果要改变某部机器人的行为,您只需将一个新的程序写入它的计算机即可。 英语里“机器人”(Robot)这个术语来自于捷克语单词robota,通常译作“强制劳动者”。用它来描述大多数机器人是十分贴切的。世界上的机器人大多用来从事繁重的重复性制造工作。它们负责那些对人类来说非常困难、危险或枯燥的任务。 最常见的制造类机器人是机器臂。一部典型的机器臂由七个金属部件构成,它们是用六个关节接起来的。计算机将旋转与每个关节分别相连的步进式马达,以便控制机器人(某些大型机器臂使用液压或气动系统)。与普通马达不同,步进式马达会以增量方式精确移动。这使计算机可以精确地移动机器臂,使机器臂不断重复完全相同的动作。机器人利用运动传感器来确保自己完全按正确的量移动。 这种带有六个关节的工业机器人与人类的手臂极为相似,它具有相当于肩膀、肘部和腕部的部位。它的“肩膀”通常安装在一个固定的基座结构(而不是移动的身体)上。这种类型的机器人有六个自由度,也就是说,它能向六个不同的方向转动。与之相比,人的手臂有七个自由度。 大多数工业机器人在汽车装配线上工作,负责组装汽车。在进行大量的此类工作时,机器人的效率比人类高得多,因为它们非常精确。无论它们已经工作了多少小时,它们仍能在相同的位置钻孔,用相同的力度拧螺钉。制造类机器人在计算机产业中也发挥着十分重要的作用。它们无比精确的巧手可以将一块极小的微型芯片组装起来。 机器臂的制造和编程难度相对较低,因为它们只在一个有限的区域内工作。如果您要把机器人送到广阔的外部世界,事情就变得有些复杂了。 首要的难题是为机器人提供一个可行的运动系统。如果机器人只需要在平地上移动,轮子或轨道往往是最好的选择。如果轮子和轨道足够宽,它们还适用于较为崎岖的地形。但是机器人的设计者往往希望使用腿状结构,因为它们的适应性更强。制造有腿的机器人还有助于使研究人员了解自然运动学的知识,这在生物研究领域是有益的实践。 机器人的腿通常是在液压或气动活塞的驱动下前后移动的。各个活塞连接在不同的腿部部件上,就像不同骨骼上附着的肌肉。若要使所有这些活塞都能以正确的方式协同工作,这无疑是一个难题。在婴儿阶段,人的大脑必须弄清哪些肌肉需要同时收缩才能使得在直立行走时不致摔倒。同理,机器人的设计师必须弄清与行走有关的正确活塞运动组合,并将这一信息编入机器人的计算机中。许多移动型机器人都有一个内置平衡系统(如一组陀螺仪),该系统会告诉计算机何时需要校正机器人的动作。 自动机器人可以自主行动,无需依赖于任何控制人员。其基本原理是对机器人进行编程,使之能以某种方式对外界刺激做出反应。极其简单的碰撞反应机器人可以很好地诠释这一原理。 这种机器人有一个用来检查障碍物的碰撞传感器。当您启动机器人后,它大体上是沿一条直线曲折行进的。当它碰到障碍物时,冲击力会作用在它的碰撞传感器上。每次发生碰撞时,机器人的程序会指示它后退,再向右转,然后继续前进。按照这种方法,机器人只要遇到障碍物就会改变它的方向。 高级机器人会以更精巧的方式运用这一原理。机器人专家们将开发新的程序和传感系统,以便制造出智能程度更高、感知能力更强的机器人。如今的机器人可以在各种环境中大展身手。 较为简单的移动型机器人使用红外或超声波传感器来感知障碍物。这些传感器的工作方式类似于动物的回声定位系统:机器人发出一个声音信号(或一束红外光线),并检测信号的反射情况。机器人会根据信号反射所用的时间计算出它与障碍物之间的距离。 迄今为止的大多数机器人更像是厨房用具。机器人专家们将它们制造出来以专门用于特定用途。但是它们对完全不同的应用场景的适应能力并不是很好。 这种情况正在改变。一家名叫Evolution Robotics的公司开创了适应型机器人软硬件领域的先河。该公司希望凭借一款易用的“机器人开发人员工具包”开拓出自己的利基市场。 这个工具包有一个开放式软件平台,专门提供各种常用的机器人功能。例如,机器人学家可以很容易地将跟踪目标、听从语音指令和绕过障碍物的能力赋予它们的作品。从技术角度来看,这些功能并不具有革命性的意义,但不同寻常的是,它们集成在一个简单的软件包中。 这个工具包还附带了一些常见的机器人硬件,它们可以很容易地与软件相结合。标准工具包提供了一些红外传感器、马达、一部麦克风和一台摄像机。机器人专家可以利用一套加强型安装组件将所有这些部件组装起来,这套组件包括一些铝制身体部件和结实耐用的轮子。 人工智能(AI)无疑是机器人学中最令人兴奋的领域,无疑也是最有争议的:所有人都认为,机器人可以在装配线上工作,但对于它是否可以具有智能则存在分歧。 就像“机器人”这个术语本身一样,您同样很难对“人工智能”进行定义。终极的人工智能是对人类思维过程的再现,即一部具有人类智能的人造机器。人工智能包括学习任何知识的能力、推理能力、语言能力和形成自己的观点的能力。 人工智能的真正难题在于理解自然智能的工作原理。开发人工智能与制造人造心脏不同,科学家手中并没有一个简单而具体的模型可供参考。我们知道,大脑中含有上百亿个神经元,我们的思考和学习是通过在不同的神经元之间建立电子连接来完成的。但是我们并不知道这些连接如何实现高级的推理能力,甚至对低层次操作的实现原理也并不知情。大脑神经网络似乎复杂得不可理解。 因此,人工智能在很大程度上还只是理论。科学家们针对人类学习和思考的原理提出假说,然后利用机器人来实验他们的想法。 无论如何,机器人都会在我们未来的日常生活中扮演重要的角色。

工业机械手的组成及机能有哪些?

工业机械手系统组成 工业机械手主要由执行机构、驱动机构、和控制系统三大部分组成。 (1)执行机构 机械手的执行机构可以分为手部、手臂和躯干等三部分。手部一般安装在手臂的前端其构造是模仿人的手指。手臂可以分为无关节臂和有关节臂,其主要作用是引导手指准确地抓住工件,并运送到所需要的位置上。躯干是安装手臂、动力源和执行机构的支架。 (2)驱动机构 机械手的驱动机构主要有四种:液压驱动、气压驱动、电气驱动和机械驱动。其中以液压、气动用的最多,电动和机械用的较少。 (3)控制系统 机械手控制的要素包括工作顺序、到达位置、动作时间、运动时间、运动速度和加减速度等。机械手的控制可以分为点位控制、连续轨迹控制、力控制和智能控制方式等。 工业机械手的机能 机械手的机能就是指它具有完成人们预定作业所需要的能力。运动机能是指机械手完成预定工艺操作应具有的运动自由度,以及所能到达的活动范围。同时还要求机械手具有对机械手的抓放、定向、工艺操作和行走的能力等。通用机械手应根据作业的要求,设计成具有完善的运动机能,即它的动作要接近于人手操作时的某些运动机能,以适应广大作业范围的需要。专用机械手则仅赋予部分的运动机能,可按照工艺操作的需要来确定。机械手又应具有一定的物理机能如载荷能力、运动速度、持续工作能力以及工作的准确性和稳定性等性能。此还应具有耐热、耐腐蚀的能力,以适应工艺操作的需要和具体的工作环境。机械手的另一个要机能就是控制机能。对专用机械手而言,是指能自动完成作业程序的能力。但对于一般的通用机械手其控制性能是指它具有自动地、或被动地变换程序的能力,即按照指令能自动地、再现地完成规定的动作程序的机能。 工业机械手作用 机械工业中,应用机械手的意义: ⑴可提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 ⑵可改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。 ⑶可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。

直线电机与滚珠丝杆性能有哪些不同?

1.精度比较: 精度方面直线电机因传动机构简单减少了插补滞后的问题,定位精度、重现精度、绝对精度,通过位置检测反馈控制都会较“旋转伺服电机+滚珠丝杠”高,且容易实现。 直线电机定位精度可达0.1μm。“旋转伺服电机+滚珠丝杠”最高达到2~5μm,且要求CNC-伺服电机-无隙连轴器-止推轴承-冷却系统-高精度滚动导轨-螺母座-工作台闭环整个系统的传动部分要轻量化,光栅精度要高。 若想达到较高平稳性,“旋转伺服电机+滚珠丝杠”要采取双轴驱动,直线电机是高发热部件,需采取强冷措施,要达到相同目的,直线电机则要付出更大的代价。 2.价格比较: 价格方面直线电机的价格要高出很多,这也是限制直线电机被更广泛应用的原因。 3.能耗比较: 直线电机在提供同样转矩时的能耗是“旋转伺服电机+滚珠丝杠”一倍以上,“旋转伺服电机+滚珠丝杠”属于节能、增力型传动部件,直线电机可靠性受控制系统稳定性影响,对周边的影响很大必须采取有效隔磁与防护措施,隔断强磁场对滚动导轨的影响和对铁屑磁尘的吸附。 4.速度比较: 速度方面直线电机具有相当大的优势,直线电机速度达到300m/min,加速度达到10g;滚珠丝杠速度为120m/min,加速度为1.5g。从速度上和加速度的对比上,直线电机具有相当大的优势,而且直线电机在成功解决发热问题后速度还会进一步提高,而“旋转伺服电机+滚珠丝杠”在速度上却受到限制很难再提高较多。从动态响应上因为运动惯量和间隙以及机构复杂性等问题直线电机也占有绝对的优势。 速度控制上直线电机因其响应快,调速范围更宽,可以实现启动瞬间达到最高转速,高速运行时又能迅速停止。调速范围可达到1:10000。 直线电机和“旋转伺服电机+滚珠丝杠”两种驱动方式尽管各有优势,但也有自身的软肋。两者在数控机床上都有各自最佳的适用范围。 直线电机驱动的优势: (1)高速、超高速、高加速度和生产批量大、要求定位的运动多、速度大小和方向频繁变化的场合。例如汽车产业和IT产业的生产线,精密、复杂模具的制造。 (2)大型、超长行程高速加工中心,航空航天制造业中轻合金、薄壁、金属去除率大的整体构件“镂空”加工。例如美国CINCI ATI公司的“Hyper Mach”加工中心(46m);日本MAZAK公司的“HYPERSONIC 1400L超高速加工中心。 (3) 要求高动态特性、低速和高速时的随动性、高灵敏的动态精密定位。例如,以Sodick为代表的新一代高性能CNC电加工机床、CNC超精密机床、新一代CPC曲轴磨床、凸轮磨床、CNC非圆车床等。 (4)轻载、快速特种CNC装备。例如德国DMG的“DML80 Fine Cutting”激光雕刻、打孔机,比利时LVD公司的“AXEL3015S”激光切割机,MAZAK的“Hyper Cear510”高速激光加工机等。