轴承主要测量方法

(1)轴承主要尺寸的测量 ① 轴承厚度:将外径千分尺固定测头由平面改制成球面,可用来测量轴承厚度。轴承厚度一般应控制在0.005~0.010毫米范围内,否则会使轴承内径超差。轴承在近开口处有微量减薄,测量时应予注意。 ② 轴承与承孔的配合紧度:配合紧度是由轴承的自由弹开量和余面高度来保证的。测量余面高度的方法下:按规定装合轴承,交轴承盖螺栓紧固到规定扭矩后松开其中一个螺栓,用塞尺测量轴承盖接口处的间隙,其值应在0.05~0.15毫米范围之内。 ③ 轴承内径:测量前需将轴承按规定装合并按规定扭矩拧紧轴承盖螺栓,用内径量表,在外径千分尺上校对基准尺寸后测量,测量时要避开减薄区。轴承内径和对应轴颈外径尺寸之差值是配合间隙。 ④ 主轴承内孔的同轴度:主轴承内孔的同轴度误差主要是其承孔同轴度误差造成的,而承孔同轴度误差产生的原因则是缸体的变形。当主轴颈径向圆跳动在规定公差内时,检查主轴颈和轴承的吃合印痕,如果各道主轴承吃合印痕位置明显不一致,说明同轴度误 差大,可采用刮削、镗削轴承或更换缸体等办法解决,否则难以保证发动机正常工作。 (2)承孔的测量 承孔的测量可以使用内径量表在外径千分尺上核对基准尺寸后测量,同时还需测量承孔的圆度和圆柱度。烧坏轴承常使承孔在开口处直径缩小而圆度超差,对轴承的正常工作极为不利。如果连杆螺栓的定位面的配合松旷,连杆轴承盖会移位使承孔圆度超差。轴承承孔的圆度误差应控制在尺寸公差之内,而圆柱度则应严格控制。

联轴器的安装方法有哪些?

联轴器与轴的配合大多为过盈配合,联接分为有键联接和无键联接,联轴器的轴孔又分为圆柱形轴也已与锥形轴孔两种形式。 联轴器在轴上的装配是联轴器安装的关键之一。 装配方法有静力压力法、动力压入法、温差装配法及液压装配法等。 温差装配法:用加热的方法使联轴器受热膨胀或用冷却的方法使轴端受冷收缩,从而能方便地把轮联轴器装到轴上。这种方法比静力压入法、动力压入法有较多的优点,对于用脆性材料制造的轮毂,采用温差装配是十分合适的。温差装配法大多采用加热的方法,冷却的方法用的比较少。加热的方法有多种,有的将轮毂放入高闪点的油中进行油浴加热或焊枪烘烤,也有的用烤炉来加热,装配现场多采用油浴加热和焊枪烘烤。油浴加热能达到的最高温度取决于油的性质,一般在200度以下。采用其他方法加热轮毂时,可以使联轴器的温度高于200度,但从金相及热处理的角度考虑,联轴器的加热温度不能任意提高,钢的再结晶温度为430度,如果加热温度超过430度,会引起钢材内部组织上的变化,因此加热温度的上限必须小于430度,为了保险起见,所定的加热温度上限应在400度以下。 动力压入法:这种方法是指采用冲击工具或机械来完成装配过程,一般用于联轴器与轴之间的配合是过渡配合或过盈不大的场合。装配现场通常用手锤敲打的方法,方法是在轮毂的端面上垫入木块或其他软材料作缓冲件,依靠手捶的冲击力,把联轴器敲入。这种方法对铸铁、淬火的钢、铸造合金等脆性材料制造的联轴器有局部损伤的危险,不宜采用。 静力压力法:这种方法是根据装配时所需压入力的大小不同、采用夹钳、千斤顶、手动或机动的压力机进行,静力压入法一般用于锥形轴孔。由于静力压入法受到压力机械的限制,在过盈较大时,施加很大的力比较困难。同时,在压入过程中会切去联轴器与轴之间配合面上不平的微小凸峰,使配合面受到损坏。 装配后的检查:联轴器在轴上装配完成后,应仔细检查联轴器与轴的垂直度和同轴度。一般是在联轴器的端面和外圆设置两块百分表,盘车使轴转动时,观察联轴器的全跳动(包括端面跳动和径向跳动)的数值,判定联轴器与轴的垂直度和同轴度的情况。不同转速、不同形式的联轴器对全跳动的要求值不同,联轴器在轴上装配完成后,必须使联轴器全跳动的偏差值 在设计要求的公差范围内,这是联轴器装配的主要质量要求之一。

轴承的选择方法

一、轴承的选择 1、轴承型号的选择:轴承型号一般是由用户的技术人员根据配套产品的使用条件及承受负荷对轴承进行选择。业务人员主要了解用户的实际负荷是否与所选轴承相符合,如果轴承达不到使用要求,应尽快建议客户改选型号,但除非特殊产品在选择型号上一般不会有什么问题。 2、轴承游隙的选择:用户在购买轴承时一般只会告知在什么型号、等级,很少会对轴承的游隙提出要求,业务人员必须问清轴承的使用条件、其中轴承的转速、温度、配合公差都直接关系到轴承游隙的选择。一般在3500转/分以下转速的电机大多采用CM游隙,如高温高速电机则要求采用相对较大的游隙。轴承游隙在装配后会因为内孔的涨大及外圆的缩小而导致减少,游隙的减少量=过盈量×60%(轴承室是铝的除外)。比如轴承装配前游隙是0.01mm,装配时过盈量为0.01mm,则轴承装配后的游隙为0.004mm。在理论上轴承在零游隙时噪音和寿命都达到最佳的状态,但在实际运转中考虑到温升等问题,轴承在装配后游隙为0.002mm-0.004mm较好。 3、油脂的选择:油脂的选择一般是根据轴承的转速、耐温情况、噪音要求及起动力矩等方面进行选择,要求业务人员对各种油脂的性能很了解。 4、轴承密封型式的选择:轴承的润滑可分为油润滑和脂润滑。油润滑轴承一般是选用形式轴承,脂润滑轴承一般选用防尘盖或橡胶密封件密封。防尘盖适用于高温或使用环境好的部位,密封件分接触式密封和非接触式密封两种,接触式密封防尘性能好但起动力矩大,非接式密封起动力矩小,但密封性能没有接触式好。 二、轴承使用时应注意事项 1、轴和轴承室公差的选择与控制:轴承压入轴承室后应转动灵活无阻滞感。如有明显转动不灵活,则表明轴的尺寸太大了,公差要下调。如轴承压入轴后用手转动有明显“沙沙”感,则可能是轴的公差太大或轴的圆度不好。所以在控制好轴和轴承室公差时也要控制好圆度。 2、轴承的装配方式:因为轴承是高精度产品,如装配不当很容易对轴承沟道造成损伤,导致轴承损坏。轴承在装配时应有专用的模具,不能随意敲打,在压入轴时只能小圈受力,压大圈时只能大圈受力。装配时要求采用气压或液压,在压装时上下模要外于水平状态,如有倾斜会导致轴承沟道因受力损坏,而使轴承产生导响。 3、装配异物的防止:轴承在装到转子上做动平衡时很容易将动平衡时产生的铁屑进入轴承内部,因此最好是装轴承前做动平衡。有一些厂家为了装配方便,装配时在轴承室内涂上一些油或油脂起润滑效果,但往往操作人员很难将量控制好,如果油或油脂在轴承室内积留较多,在轴承转动时很容易沿着轴进入轴承内部。轴承室最好是不要涂油或油脂,如非涂不可则要控制不得在轴承室内有积留。 4、漆锈的预防:漆锈的特征是多发在封密式的电机,电机在装配时声音很好,但在仓库内放了一些时间后,电机异响变的很大,拆下轴承有严重生锈现象。该问题主要是因为绝缘漆挥发出来的酸性物质在一定的温度、湿度下形成腐蚀性的物质,把轴承沟道腐蚀后导致轴承损坏。该问题目前只能是选用好的绝缘漆,并在烘干后通风一段时间后装配。

联轴器的分类及结构特点

刚性可移式联轴器(无弹性元件联轴器)的种类:十字滑块联轴器、万向联轴器和鼓形齿联轴器。 齿式联轴器 A.组成:两个带有内齿及凸缘的外套筒、 两个带外齿的内套筒; B.工作原理:两内套筒分别用键与两轴连接,两外套筒用螺栓连接,通过内外齿的啮合传递转矩和运动。 C.特点:为能补偿两轴的相对位移,将外齿环的轮齿做成鼓形齿,齿顶做成中心线在轴线上的球面,齿顶和齿侧留有较大的间隙。 通过啮合齿间的顶隙、侧隙,具备有允许两轴间有径向、轴向、角综合位移补偿的功能; 转速高(可达3500r/min),能传递很大的转矩(可达106N·m),并能补偿较大的综合位移,工作很高、对安装精度要求不高,要润滑; D.缺点:质量大,制造较困难,成本高。 E.应用:广泛用于汽车等大重型机械设备中。 2.十字滑块联轴器 A.结构特点:由半连轴器1、3(左、右套筒)和浮动盘2(十字滑块)联接在一起,两轴一起转动;浮动盘的凸榫可在半连轴器的凹槽中滑动;摩擦较大,要加以润滑。 B.优点:径向尺寸小,结构简单 C.缺点:但耐冲击性差,滑块与凹槽间易摩损,需润滑;十字滑块因径向位移会产生较大离心惯性力,而给轴和轴承带来附加载荷。 D.应用场合:常用于刚性大、转速低,冲击小的场合。 3.万向联轴器 A.结构:由一个十字轴、两个万向节叉、四个滚针轴承组成;所有转动副的回转中心(轴线)交于一点O,两轴间的夹角为α;是一种用以传递变夹角的相交两轴之间的运动的装置(联轴器)。 B.工作原理:当轴Ⅰ旋转一周时,轴Ⅱ也将随之转一周,即两轴的平均传动比为1;但是,两轴的瞬时传动比却不恒为1,而是作周期性变化的;万向节的这种特性称作瞬时传动比的不均匀性;就单个万向节而言,在输入轴与输出轴之间有夹角时,两轴的角速度不相等,即万向节有不等速性;两轴间的夹角α越大,从动轴速度波动越明显;故α应在35°~45°之间。为了防止主、从动轴角速度不相等;为了完全消除上述万向节中从动轴变速传动的缺点,常成对使用。 C.优点:具有较大的角向补偿能力,结构紧凑,传动效率高; D.缺点:在传动中将产生附加动载荷,转速不宜过高; E.应用场合:主要用于两轴相交的传动,重载、中载、轻载等中低速的场合,如机床、汽车。 F.双万向节应满足条件:为了使该机构能获得恒定的传动比,机构要满足如下三个条件:(1)主动轴、从动轴、中间轴的三根轴线应位于同一平面内。 (2)主动轴、从动轴与中间轴的轴间夹角应相等: (3)中间轴两端的叉面应位于同一平面内。 (二)常用弹性联轴器有弹性套柱销联轴器和弹性柱销联轴器两种。 弹性套柱销联轴器 A.结构:在结构上与凸缘联轴器相似,只是用套有橡胶弹性套的注销代替了联接螺栓; B.原理:利用弹性套的弹性变形来补偿两轴的相对位移; C .特点:弹性套柱销连轴器制造容易,装拆方便,成本较低,但弹性套易磨损,寿命较短。 D.适用于:载荷平稳,正反转或启动频繁、转速高的传递中小转矩的两轴联接。 2.弹性柱销联轴器 A.结构:将若干非金属材料制成的柱销,置于两半联轴器凸缘孔中,而实现两半联轴器的连接;柱销材料常用尼龙,其它具有弹性的非金属材料也可。 B.原理:利用弹性柱销的弹性变形来补偿两轴轴向位移; C.特点:弹性柱销连轴器可允许较大的轴向窜动,但径向位移和偏角位移的补偿量不大。其结构简单,制造容易和维护方便。 D.适用于:轻载的场合

轴承常见故障及原因

1.故障的形式: (1) 轴承转动困难、发热; (2) 轴承运转有异声; (3) 轴承产生振动; (4) 内座圈剥落、开裂; (5) 外座圈剥落、开裂; (6) 轴承滚道和滚动体产生压痕。 2.故障原因分析 (1) 装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧”瓦口”处出现”夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2) 装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。即将轴承放入盛有机油的油桶中,机油桶外部用热水或火焰加热,工艺要求加热的油温控制在80℃~90℃,一般不会超过100℃,最多不会超过120℃。轴承加热后迅速取出套装在轴颈上。若温度控制不当造成加热温度过高,则会使轴承产生回火而致硬度降低,运行中轴承就易磨损、剥落、甚至开裂。 D.装配时间隙调整不当 滚动轴承的间隙分为径向间隙和轴向间隙,其功用是保证滚动体的正常运转和润滑以及补偿热伸长。 对于间隙可调整的轴承而言,因其轴向间隙和径向间隙之间有正比例的关系,所以安装是只要调整好轴向间隙就可获得所需的径向间隙,而切它们一般都是成对使用的(即装在轴的两端或一端),因此,只需要调整一只轴承的轴向间隙即可。一般用垫片调整轴向间隙,有的也可用螺钉或止推环调整。 对于间隙不可调整的滚动轴承,因其径向间隙在制造时就已按标准确定好了,不能进行调整,此类轴承装在轴径上或轴承座孔内之后,实际的径向间隙称为装配径向间隙,装配时要使装配径向间隙的大小恰好能在运转中造成必要的工作径向间隙,以保证轴承灵活转动。此类轴承在工作时,由于轴在温度升高时受热伸长而使其内处座圈发生相对位移,从而使轴承的径向间隙减少,甚至使滚动体在内外座圈间卡住。若将双支承滚动轴承中的一个轴承(另一个轴承固定在轴上和轴承座中)和侧盖间留出轴向间隙,可避免上述现象。 E.联轴器找正不当 大多数运转设备的输入轴是通过联轴器与动力轴相连接,因此装配时必须进行联轴器的找正,使主动轴与从动轴在同一轴线上。 F润滑不良 滚动轴承使用的润滑油(或润滑脂)都有一定的工作温度,当温度过高时就会变质,从而失去润滑作用,使轴承因高温而烧损。另外,润滑油(或润滑脂)本身质地不良或运行中加油(脂)不及时,也会造成轴承温度升高或产生异声。 G转子不平衡 一般来说,运转设备的转子在装配前都要进行动、静平衡,所以,轴承是不会出现问题的。但有些转子在运行过程中由于受到介质的腐蚀或固体杂质的磨损,或者是轴出现弯曲,就会导致产生不平衡的离心力,从而使轴承发热、振动,滚道严重磨损,直至破坏。

滚动轴承的应用特性与选用方法

滚动轴承的应用特性主要有调心特性,承载能力特性,摩擦特性,速度特性,旋转精度特性,刚性,振动与声音特性,使用寿命及可靠性等。 一、调心性能 滚动轴承的调心性是指轴承自身能够自动补偿偏斜并能保证正常工作的能力。轴承偏斜是指内外套圈中心线不重合。这种偏斜将引起轴承内部接触应力的分布不均匀,产生应力集中,最终导致轴承的早期失效。 深沟球轴承、圆柱滚子轴承和圆锥滚子轴承只能进行少量的角度补偿,调心球轴承或调心滚子轴承具有良好的调心性能,外球面球轴承调心性能更佳,推力球轴承容易产生偏斜,用带调心座垫圈的推力球轴承调心性能良好。 二、承载能力 承载能力是指轴承在一般工作状态下可以承受的载荷容量。轴承承载能力有两个指标来表示,即额定动载荷和额定静载荷。前者是轴承承载能力的动态性能,后者是轴承承载能力的静态性能。 在选用轴承时,对于同一套轴承套圈之间有相对运动的应采用基本额定动载荷作为选择承载能力的指标。对于套圈之间相对静止或转速很低的轴承,可以采用基本额定静载荷作为选择承载能力的指标。 滚动轴承的承载能力与轴承的结构和尺寸有关。一般情况下,在轴承结构一定时,轴承外形尺寸越大承载能力越大。在轴承外形尺寸一定时,滚子轴承的承载能力大于球轴承,其值为球轴承的1.5~3倍。为了便于各种轴承结构承载能力之间的比较,承载能力也可用“额定动载荷比”来表示,其含义是向心轴承的额定动载荷值与相同外形尺寸的深沟球轴承(推力轴承与推力球轴承相比)额定动载荷的比值。通过比值大小可以了解各种轴承承载能力的水平。 三、摩擦特性 虽然滚动轴承的最大优点是摩擦系数小,但仍然存在着摩擦。轴承内部各接触表面之间的摩擦,不仅影响轴承的温升、运转精度、功率消耗和承载能力,而且还会影响使用寿命。滚动轴承的摩擦特性是以摩擦力矩的大小来进行衡量的。摩擦力矩与轴承的结构设计、游隙、加工精度、载荷、转速和润滑条件等有关。 一般情况下,球轴承比滚子轴承的摩擦力矩小。受纯径(轴)向载荷时向心轴承(推力轴承)的摩擦力矩最小,受径向和轴向联合载荷时,轴承接触角与载荷角的值越接近则摩擦力矩越小。 四、速度特性 滚动轴承在中低速(低于0.5倍的极限转速)条件下工作时,转速的高低对选择轴承没有太大的影响。但滚动轴承转速较高时,滚动体和保持架产生的惯性力会导致轴承运转状态和润滑状态的恶化,如旋转精度下降,振动和声音加剧,工作温度上升,打滑等。严重时还将造成轴承零件烧伤或黏着磨损失效的发生。 轴承的极限转速的相关因素: 1.轴承的结构、材料、尺寸、精度、游隙 2.保持架的结构和材料及引导方式 3.润滑方式,润滑剂的性能和用量 4.轴承所承受的载荷大小、方向和性质(指振动或冲击等) 5.轴承的散热条件。 一般在轴承产品样本中(通常是厂家的产品宣传彩页)给出的极限转速仅适用的场合: 1.当量动载荷小于等于0.1倍额定动载荷 2.润滑与冷却条件正常 3.向心轴承和推力轴承分别只承受径向力或轴向力 4.0 级公差的轴承 在选择轴承时,如果极限转速不能满足使用要求时,可以通过提高轴承零件的制造精度、改变轴承结构、保持架结构或保持架的材料、对零件表面过行减磨处理、合理选择润滑方式或润滑剂的性能等方法来提高轴承的极限转速。 在轴承内径尺寸相同时,外径尺寸越小,滚动体的尺寸越小,零件的质量越轻,运转时的离心力也就越小,因此,在满足承载能力的前题下,可以选择轻系列的轴承。 保持架的结构对转速也有很大的影响。一般实体保持架比冲压保持架的极限转速高。 五、旋转精度 轴承的旋转精度直接影响主机的工作精度。轴承工作时的旋转精度不仅与材料、制造精度、游隙及刚度等有关,还与支承轴承的零件精度和刚度以及配合精度有关。作用在轴承上的载荷也会对轴承旋转精度产生影响,而且载荷越大变形越大旋转精度也越低。轴承使用中的环境条件如振动、温度、润滑等也会对旋转精度产生一定影响。 六、振动与声音 轴承的声音有正常声和异音之分,正常声是由滚动体在滚道上因滚动而产生平滑且连续的声音。而异音一般都是由于各种不正常原因产生的,如接触或润滑不良、异物侵入、零件工作表面损伤,尺寸变化等,这些声音具有不连续而且变化的特征。 滚动轴承的振动主要由三部分组成,即与轴承弹性接触有关的振动、与零件制造误差有关的振动、与使用环境有关的振动。影响振动的原因有很多,游隙、载荷、轴承零件制造误差和支承轴承部件的制造误差、使用中杂质的侵入以及零件工作表面伤痕等都会引起振动。 七、刚性 滚动轴承的刚性就是指滚动体与滚道在载荷作用下产生变形后的相对位移关系。变形量与载荷的比值决定了刚度的大小,变形量越小刚度越大。可以通过施加预载荷来提高轴承的刚度,增加轴承的刚度可以提高轴承的旋转精度、减少振动和噪声、减少惯性力引起的打滑现象、补偿零件磨损引起的尺寸变化。合适的刚度还能改善零件之间的接触状况,使零件受力分布更加合理,从而提高轴承的疲劳寿命。刚度与轴承的结构、接触角、滚动体的尺寸和数量、载荷大小等有关。 八、温度性能 轴承在工作时,通常内圈温度总是高于外圈温度5~10度,内圈的热膨胀也大于外圈。由于工作温度的影响,轴承的工作游隙会比安装时的小,因此,在轴承选择时应考虑轴承使用温度的影响因素。 九、寿命和可靠性 广义的滚动轴承寿命包括疲劳寿命、磨损寿命、精度寿命、密封寿命、振动寿命、摆动寿命等,这些都根据轴承不同应用场合或主机的使用特点来划分的。通常所说的寿命是指轴承的疲劳寿命。 轴承的疲劳寿命是指一套轴承中的一个套圈或滚动体的材料上出现第一个疲劳扩展迹象之前,轴承的一个套圈相对另一个套圈旋转的转数。影响轴承寿命的因素很多,有轴承材料、结构设计、零件制造、使用等诸多因素。

膜片联轴器的选用方法

膜片联轴器的选用方法 1、 膜片联轴器至少由一个膜片和两个轴套组成。膜片被用销钉紧固在轴套上一般不会松动或引起膜片和轴套之间的反冲。有一些生产 商提供两个膜片的,也有提供三个膜片的,中间有一个或两个刚性元件,两边再连在轴套上。 2、 膜片联轴器这种特性有点像波纹管联轴器,实际上联轴器传递扭矩的方式都差不多。膜片本身很薄,所以当相对位移荷载产生时它 很容易弯曲,因此可以承受高达1.5度的偏差,同时在伺服系统中产生较低的轴承负荷。 3、 膜片联轴器常用于伺服系统中,膜片具有很好的扭矩刚性,但稍逊于波纹管联轴器。 4、 另一方面,膜片联轴器非常精巧,如果在使用中误用或没有正确安装则很容易损坏。所以保证偏差在联轴器的正常运转的承受范围之 内是非常必要的。 5、根据轴径调整型号: 初步选定的轴承联轴器联接尺寸,即轴孔直径d和轴孔长度L,应符合主、从动端轴径的要求,否则还要根据轴径d调整联轴器的规格。 主、从动端轴径不相同是普通现象,当转矩、转速相同,主、从动端轴径不相同时,应按大轴径选择联轴器型号。新设计的传动系统中, 应选择符合GBT3852中规定的七种轴孔型式,推荐采用J1型轴孔型式,以提高通用性和互换性,轴孔长度按i轴承联轴器产品标准的规定。

轴承使用时的注意事项有哪些方面?

1.轴承的装配方式:因为轴承是高精度产品,如装配不当很容易对轴承沟道造成损伤,导致轴承损坏。轴承在装配时应有专用的模具,不能随意敲打,在压入轴时只能小圈受力,压大圈时只能大圈受力。装配时要求采用气压或液压,在压装时上下模要外于水平状态,如有倾斜会导致轴承沟道因受力损坏,而使轴承产生导响。   2.装配异物的防止:轴承在装到转子上做动平衡时很容易将动平衡时产生的铁屑进入轴承内部,因此最好是装轴承前做动平衡。有一些厂家为了装配方便,装配时在轴承室内涂上一些油或油脂起润滑效果,但往往操作人员很难将量控制好,如果油或油脂在轴承室内积留较多,在轴承转动时很容易沿着轴进入轴承内部。轴承室最好是不要涂油或油脂,如非涂不可则要控制不得在轴承室内有积留。   3.漆锈的预防:漆锈的特征是多发在封密式的电机,电机在装配时声音很好,但在仓库内放了一些时间后,电机异响变的很大,拆下轴承有严重生锈现象。以前很多厂家都会认为是轴承的问题,经过我们的不断宣传,现在电机厂已经意识到主要是绝缘漆的问题。该问题主要是因为绝缘漆挥发出来的酸性物质在一定的温度、湿度下形成腐蚀性的物质,把轴承沟道腐蚀后导致轴承损坏。该问题目前只能是选用好的绝缘漆,并在烘干后通风一段时间后装配。 4.轴和轴承室公差的选择与控制:轴承压入轴承后应转动灵活无阻滞感。如有明显转动不灵活,则表明轴的尺寸太大了,公差要下调。如轴承压入轴后用手转动有明显“沙沙”感,则可能是轴的公差太大或轴的圆度不好。所以在控制好轴和轴承室公差时也要控制好圆度,目前国内很多厂家只对公差进行控制,没有对圆度进行控制。   轴承的寿命是与制造、装配、使用都紧密相关的,必须在每个环节都做好,才能使轴承处于最佳的运转状态,从而延长轴承的使用寿命。

滚动轴承的类型及其代号

一、滚动轴承的主要类型、性能与特点按滚动体的形状,滚动轴承可分为球轴承和滚子轴承。 按接触角 的大小和所能承受载荷的方向,轴承可分为: 1、向心轴承: 公称接触角:0° 45°,向心轴承又可细分为: A、径向接触轴承: =0°,只能承受径向载荷(如圆柱滚子轴承),或主要用于承受径向载荷,但也能承受少量的轴向载荷(如深沟球轴承); B、向心角接触轴承:0°<  45°,能同时承受径向载荷和单向的轴向载荷(如角接触球轴承及圆锥滚子轴承)。 2、推力轴承: 公称接触角:45°<  90°,推力轴承又可细分为: A、轴向接触轴承: =90°,只用于承受轴向载荷; B、推力角接触轴承:45°< <90°主要承受大的轴向载荷,也能承受不大的径向载荷。 按自动调心性能,轴承可分为自动调心轴承和非自动调心轴承。 滚子轴承的类型很多,现将最常用的几种滚动轴承的性能和特点作一简要介绍。 1、圆锥滚子轴承 能承受较大的径向载荷和单向的轴向载荷,极限转速较低。 内外圈可分离,故轴承游隙可在安装时调整,通常成对使用,对称安装。适用于转速不太高、轴的刚性较好的场合。  2、深沟球轴承 主要承受径向载荷,也可同时承受少量双向轴向载荷,工作时内外圈轴线允许偏斜8′~16′。摩擦阻力小,极限转速高,结构简单,价格便宜,应用最广泛。但承受冲击载荷能力较差。适用于高速场合,在高速时,可能来代替推力球轴承。 3、推力球轴承 推力球轴承的套圈与滚动体多半是可分离的。有单向和双向之分。 单向推力球轴承只能承受单向轴向载荷,两个套圈的内孔不一样大,内径较小的是紧圈,与轴配合,内孔较大的是松圈,与机座固定在一起。极限转速较低,适用于轴向力大而转速较低的场合。 双向推力球轴承可承受双向轴向载荷,中间套圈为紧圈,与轴配合,另两套圈为松圈。高速时,由于离心力大,球与保持架因摩擦而发热严重,寿命较低。常用于轴向载荷大、转速不高处。 4、圆柱滚子轴承 只能承受径向载荷,不能承受轴向载荷。承受载荷能力比同尺寸的球轴承大,尤其是承受冲击载荷能力强,极限转速较高。 5、调心球轴承 用于承受径向载荷,也能承受少量的双向轴向载荷。外圈滚道为球面,具有调心性能,内外圈轴线相对偏斜允许0.5°~2°,适用于多支点轴、弯曲刚度小的轴以及难于精确对中的支承。 6、滚针轴承 这类轴承采用数量较多的滚针作滚动体,一般没有保持架。径向结构紧凑,且径向承载能力很强,价格低廉。缺点是不能承受轴向载荷,滚针间有摩擦,旋转精度及极限转速低,工作时不允许内、外圈轴线有偏斜。常用于转速较低而径向尺寸受限制的场合。 7、推力调心滚子轴承 可以承受很大的轴向载荷和一定的径向载荷。滚子为鼓形,外圈滚道为球面,能自动调心,允许轴线偏斜 2°~3°,转速可比推力球轴承高,常用于水轮机轴和起重机转盘等。 8、角接触球轴承 能同时承受径向载荷与单向的轴向载荷,公称接触角α有15°、25°、40°三种。α越大,轴向承载能力也越大。通常成对使用,对称安装。极限转速较高。适用于转速较高、 同时承受径向和轴向载荷的场合。

选择电机轴承的方法

因为轴承的类型多范围广,以下将主要对使用范围最广的深沟球轴承的使用与选择作一些分析。希望对轴承认识较少的人能加深对轴承的了解。   一、轴承的选择   1、轴承型号的选择:轴承型号一般是由用户的技术人员根据配套产品的使用条件及承受负荷对轴承进行选择。业务人员主要了解用户的实际负荷是否与所选轴承相符合,如果轴承达不到使用要求,应尽快建议客户改选型号,但除非特殊产品在选择型号上一般不会有什么问题。   2、轴承游隙的选择:用户在购买轴承时一般只会告知在什么型号、等级,很少会对轴承的游隙提出要求,业务人员必须问清轴承的使用条件、其中轴承的转速、温度、配合公差都直接关系到轴承游隙的选择。一般在3500转/分以下转速的电机大多采用CM游隙,如高温高速电机则要求采用相对较大的游隙。轴承游隙在装配后会因为内孔的涨大及外圆的缩小而导致减少,游隙的减少量=过盈量×60%(轴承室是铝的除外)。比如轴承装配前游隙是0.01mm,装配时过盈量为0.01mm,则轴承装配后的游隙为0.004mm。在理论上轴承在零游隙时噪音和寿命都达到最佳的状态,但在实际运转中考虑到温升等问题,轴承在装配后游隙为0.002mm-0.004mm较好。   3、油脂的选择:油脂的选择一般是根据轴承的转速、耐温情况、噪音要求及起动力矩等方面进行选择,要求业务人员对各种油脂的性能很了解。   4、轴承密封型式的选择:轴承的润滑可分为油润滑和脂润滑。油润滑轴承一般是选用形式轴承,脂润滑轴承一般选用防尘盖或橡胶密封件密封。防尘盖适用于高温或使用环境好的部位,密封件分接触式密封和非接触式密封两种,接触式密封防尘性能好但起动力矩大,非接式密封起动力矩小,但密封性能没有接触式好。   人本轴承目前在汽车电机轴承、家电电机轴承、摩托车轴承、保健电机轴承等行业进行了专业化的制造,使轴承的噪音和寿命达到最佳状态。  

轴承必读,不用培训,看完这个,你已入行

5大件都有啥作用呢? ①内圈通常与轴紧配合,并与轴一起旋转。 ②外圈通常与轴承座孔或机械部件壳体配合,起支承作用。但是在某些应用场合,也有外圈旋转,内圈固定,或者内、外圈都旋转的。 ③滚动体借助保持架均匀地排列在内圈和外圈之间。它的形状大小和数量直接影响轴承的承载能力和使用性能。 ④保持架将滚动体均匀隔开,引导滚动体在正确的轨道上运动,改善轴承内部载荷分配和润滑性能。 ⑤用于机械的摩擦部分,起润滑和密封作用。也用于金属表面,起填充空隙和防锈作用。 构成原理 一、轴承套圈 轴承套圈结构 1. 内圈( inner ring):滚道在外表面的轴承套圈。 2. 外圈 (outer ring):滚道在内表面的轴承套圈。 3. 圆锥内圈( cone):圆锥滚子轴承的内圈。 4. 圆锥外圈( cup):圆锥滚子轴承的外圈。 5. 双滚道圆锥内圈 (double cone):有双滚道的圆锥滚子轴承内圈。 6. 双滚道圆锥外圈 (double cup):有双滚道的圆锥滚子轴承外圈。 7. 宽内圈( extended inner ring):在一端或两端加宽的轴承内圈,以便改善轴在其内孔的引导或安装紧固件或密封件提供补充位置。 8. 锁口内圈 (stepped inner ring):一个肩全部或部分被去掉的沟型球轴承内圈。 9. 锁口外圈 (counterbored outer ring):一个肩全部或部分被去掉的沟型球轴承外圈。 10. 冲压外圈 (drawn cup):由薄金属板冲压,一端封口(封口冲压外圈)或两端开口的套圈,一般指向心滚针轴承的外圈。 11. 凸缘外圈( flanged outer ring):有凸缘的轴承外圈。…

Read More

联轴器分类及工作原理

联轴器在实际应用中根据所传递转矩大小可分为重型、中型、小型和轻型。 重型万向联轴器常用于冶金机械、重型机械、石油机械、工程机械、起重机械。 中型和轻型万向联轴器常用于汽车、机床等车辆和轻工机械等。 小型万向联轴器主要是传递运动,一般用于精密机械和控制机构。那么怎么选择合适联轴器,使用的时候又有哪些注意事项呢? 1.联轴器的应用选择 1. 由于制造、安装、受载变形和温度变化等原因,当安装调整后,难以保持两轴严格精确对中。 存在一定程度的X、Y方向位移和偏斜角CI。当径向位移较大时,可选滑块联轴器,角位移较大或相交两轴的联接可选用万向联轴器等。当工作过程中两轴产生较大的附加相对位移时,应选用挠性联轴器。 2. 联轴器的工作转速高低和引起的离心力大小。 对于高速传动轴,应选用平衡精度高的联轴器,例如膜片联轴器等,而不宜选用存在偏心的滑块联轴器等。 3. 所需传递的转矩大小和性质以及对缓冲减振功能的要求。 例如,对大功率的重载传动,可选用齿式联轴器;对严重冲击载荷或要求消除轴系扭转振动的传动,可选用轮胎式联轴器等具有高弹性的联轴器。 4. 联轴器的工作转速高低和引起的离心力大小。 对于高速传动轴,应选用平衡精度高的联轴器,例如膜片联轴器等,而不宜选用存在偏心的滑块联轴器等。 5. 两轴相对位移的大小和方向。 当安装调整后,难以保持两轴严格精确对中,或工作过程中两轴将产生较大的附加相对位移时,应选用挠性联轴器。例如当径向位移较大时,可选滑块联轴器,角位移较大或相交两轴的联接可选用万向联轴器等。 6. 联轴器的可靠性和工作环境。 通常由金属元件制成的不需润滑的联轴器比较可靠;需要润滑的联轴器,其性能易受润滑完善程度的影响,且可能污染环境。含有橡胶等非金属元件的联轴器对温度、腐蚀性介质及强光等比较敏感,而且容易老化。 7. 联轴器的制造、安装、维护和成本。 在满足便用性能的前提下,应选用装拆方便、维护简单、成本低的联轴器。例如刚性联轴器不但结构简单,而且装拆方便,可用于低速、刚性大的传动轴。一般的非金属弹性元件联轴器(例如弹性套柱销联轴器、弹性柱销联轴器、梅花形弹性联轴器等),由于具有良好的综合能力,广泛适用于一般的中、小功率传动。 2.联轴器的使用注意事项 01.联轴器不允许有超过规定的轴心线歪斜和径向位移,以免影响其传动性能。 02.万向联轴器安装好以后,正常运转一个班,必须检查所有紧固螺钉,如发现松动,必须以规定的拧紧力矩再次拧紧,这样反复几个班,以保证不会松动。 03.万向联轴器滑动面、十字头、轴承等必须保证润滑,一般用2#工业锂基油脂或2#二硫化钼钙基脂,在一般条件下连续运转500小时加油一次,间断运转2个月加油一次,若高温条件下工作必须每周加油一次,加油时把轴承端面油孔螺钉拧下,用高压油枪注入至溢出为止。 04.联轴器日常保养时,如发现压痕等正常磨损现象,应及时更换;联轴器不允许有裂纹存在,如有裂纹则需更换(可用小锤敲击,根据声音判断);在保养拆洗时,将十字轴调转180°,以达到轴颈受力交替使用。 05.齿轮联轴器齿宽接触长度不得小于70%;其轴向窜动量不得大于5mm。 06.齿轮联轴器的齿厚磨损,对起升机构超过原齿厚的15%时,对运行机构超过25%时应报废,有断齿时也应报废。 07.柱销联轴器的弹性圈,齿轮联轴器的密封圈,如有损坏老化,要注意及时更换。 08.在工作运转中,应经常观察万向联轴器是否发生异常的径向摆动和轴承发热等现象,发现这些现象必须及时维修。

联轴器有哪些种类?

联轴器有哪些分类呢? 1.齿式联轴器 GICL鼓型齿式联轴器 GICLZ鼓形齿式联轴器 GⅡCL鼓形齿式联轴器 GⅡCLZ鼓形齿式联轴器 GCLD鼓型齿式联轴器 TGL尼龙内齿圈联轴器 2.轮胎式联轴器 UL 型轮胎式联轴器 LA 型轮胎式联轴器 LB 型轮胎式联轴器 DL 多角形橡胶联轴器 3.星形弹性联轴器 XL 系列星形弹性联轴器 LXD单法兰星形联轴器 XLS双法兰型星形联轴器 LXZ带制动轮星形联轴器 LXP带制动盘型联轴器 LXT接中间套型联轴器 LXJ接中间轴星形联轴器 LXQ接中间轴球铰联轴器 4.梅花形弹性联轴器 LM(原ML)梅花联轴器 LMS(原MLS)梅花联轴器 LMD(原MLZ)梅花联轴器 LMZI(MLLI)梅花联轴器 LMZⅡ(MLLⅡ)联轴器 带制动轮梅花形弹性联轴器 5.万向联轴器 万向联轴器有多种结构型式,例如:十字轴式、球笼式、球叉式、凸块式、球销式、球铰式、球铰柱塞式、三销式、三叉杆式、三球销式、铰杆式等,最常用的为十字轴式,其次为球笼式,万向联轴器的共同特点是角向补偿量较大,不同结构型式万向联轴器两轴线夹角不相同,一般≤5°-45°之间。万向联轴器利用其机构的特点,使两轴不在同一轴线,存在轴线夹角的情况下能实现所联接的两轴连续回转,并可靠地传递转矩和运动。万向联轴器最大的特点是具有较大的角向补偿能力,结构紧凑,传动效率高。在实际应用中根据所传递转矩大小分为重型、中型、轻型和小型。 膜片型联轴器 6.单节膜片联轴器 单膜片联轴器G8S,特性:大扭矩承载、高扭矩刚性和卓越灵敏度;免维护、超强抗油和耐腐蚀性;零回转间隙;体积小巧的联轴器,总长度短 ;不锈钢膜片补偿角向轴向偏差 ;顺时针与逆时针回转特性完全相同 双膜片联轴器G8L,特性:双膜片不锈纲膜片容许偏角,偏心及轴向偏差;免维护、超强抗油和耐腐蚀性;零回转间隙;体积小巧的联轴器,总长度长 ;不锈钢膜片补偿角向轴向偏差 ;顺时针与逆时针回转特性完全相同

减速机轴承发响的30种原因!

1.油脂有杂质; 2. 润滑不足(油位太低,保存不当导致油或脂通过密封漏损); 3. 轴承的游隙太小或太大(生产厂问题); 4. 轴承中混入砂粒或碳粒等杂质,起到研磨剂作用; 5. 轴承中混入水份,酸类或油漆等污物,起到腐蚀作用; 6. 轴承被座孔夹扁(座孔的圆度不好,或座孔扭曲不直); 7. 轴承座的底面的垫铁不平(导致座孔变形甚至轴承座出现裂纹); 8. 轴承座孔内有杂物(残留有切屑,尘粒等); 9. 密封圈偏心(碰到相邻零件并发生摩擦); 10.轴承受到额外载荷(轴承受到轴向蹩紧,或一根轴上有两只固定端轴承); 11.轴承与轴的配合太松(轴的直径偏小或紧定套未旋紧); 12.轴承的游隙太小,旋转时过紧(紧定套旋紧得过头了); 13.轴承有噪声(滚子的端面或钢球打滑造成); 14.轴的热伸长过大(轴承受到静不定轴向附加负荷); 15.轴肩太大(碰到轴承的密封件并发生摩擦); 16.座孔的挡肩太大(把轴承发的密封件碰得歪曲); 17.迷宫式密封圈的间隙太小(与轴发生摩擦); 18.锁紧垫圈的齿弯曲(碰到轴承并发生摩擦); 19.甩油圈的位置不合适(碰到法兰盖并发生摩擦); 20.钢球或滚子上有压坑(安装时用锤子敲打轴承所造成); 21.轴承有噪音(有外振源干扰); 22.轴承受热变色并变形(使用喷枪加热拆卸轴承所造成); 23.轴太粗使实际配合过紧(造成轴承温度过高或发生噪音); 24.座孔的直径偏小(造成轴承温度过高); 25.轴承座孔直径过大,实际配合太松(轴承温度过高–外圈打滑); 26.轴承座孔变大(有色金属的轴承座孔被撑大,或因热膨胀而变大); 27.保持架断裂 。 28.轴承滚道生锈。 29.钢球、滚道磨损(磨加工不合格或产品有碰伤)。 30.套圈滚道不合格(生产厂问题)。

选择联轴器的因素及联轴器选型标准有哪些?

选择联轴器的因素: 1.纠偏能力 纠偏能力是指弹性联轴器其弹性体本身所具有的弹性能承受的径向、角向、轴向的恢复能力。根据机械和使用场合本身需求连接的精密度、误差的不同,选用不同纠偏能力的联轴器,来纠正机械产生的误差,达到延长电机和丝杆或其它传动器件的使用寿命。 2.载荷类别 由于结构和材料不同,用于各个机械产品传动系统的联轴器,其载荷能力差异很大。载荷类别主要是针对工作机的工作载荷的冲击、振动、正反转、制动、频繁启动等原因而形成不同类别的载荷。传动系统的载荷类别是选择联轴器品种的基本依据。 3.动力机的机械特性 动力机到工作机之间,通过一个或数个不同品种型号、规格的联轴器将主、从动端联接起来,形成轴系传动系统。由于动力机工作原理和机构不同,其机械特性差别较大,对传动系统形成不等的影响。不同类别的动力机,由于其机械特性不同,应选取相应的动力机系数KW,选择适合于该系统的最佳联轴器。动力机的类别是选择联轴器品种的基本因素,动力机的功率是确定联轴器性能的主要依据之一,与联轴器转矩成正比。 4.联轴器的许用转速 联轴器的许用转速范围是根据联轴器不同材料允许的线速度和最大外缘尺寸,经过计算而确定。不同材料和品种、规格的联轴器许用转速的范围不相同,改变联轴器的材料可提高联轴器许用转速范围,这个取决于不同的机械类别。 5.工作环境 联轴器与各种不同主机产品配套使用,周围的工作环境比较复杂,如温度、湿度、水、蒸汽、粉尘、砂子、油、酸、碱、腐蚀介质、盐水、辐射等状况,选择联轴器时必须考虑的重要因素之一。环境的不同,所选用的联轴器材料也不同。 联轴器选型标准有哪些? 1.GB/T4323-2002 弹性套柱销联轴器 2003-04-01实施,代替GB/T 4323-1984 2.GB/T5272-2002 梅花形弹性联轴器 2003-04-01实施,代替GB/T 5272-1985 3.GB/T5844-2002 轮胎式联轴器 2003-04-01实施,代替GB/T 5844-1986 4.GB/T6069-2002 滚子链联轴器 2003-04-01实施,代替GB/T 6069-1985 5.GB/T5014-2003 弹性柱销联轴器 2003-12-01实施,代替GB/T 5014-1985 6.GB/T5015-2003 弹性柱销齿式联轴器 2003-12-01实施,代替GB/T 5015-1985 7.GB/T5843-2003 凸缘联轴器 2003-12-01实施,代替GB/T 5843-1986 8.GB/T12458-2003 联轴器分类 2003-12-01实施,代替GB/T 12458-1990 9.GB/T12922-2008 弹性阻尼簧片联轴器 2008-09-01实施,代替GB/T 12922-1991 10.GB/T14653-2008 挠性杆联轴器 2008-09-01实施,代替GB/T 14653-1993 11.GB/T2496-2008 弹性环联轴器 2008-12-15实施,代替GB/T…

Read More

直线轴承使用技巧

一、基本概念: 直线轴承是一种精度高、成本低、摩擦阻力小的直线运动系统。直线轴承是和导向轴组合使用的,利用滚珠的滚动运动实现无限直线运动的直动系统。 由于承载球与轴呈点接触,故使用载荷小。钢球以极小的磨擦阻力旋转,从而能获得高精度的平稳运动 二、结构 三、 工作过程 直线轴承是在外圈之内装有钢球保持架,保持架装有多个滚球,滚珠作无限循环运动。保持架的两端以密封垫挡圈固定,在各钢球受力工作的直线轨道方向上设有缺口窗,此部分是使受载荷的钢球与轴作滚动接触,用非常低的磨擦系数相对移动。 因此直线球轴承为机械设备、自动化设备、节能设备等最合适选用的轴承。 四、分类: 1、按材质分 外壳:不锈钢、轴承钢、铝合金(带座直线轴承); 保持:有树脂、不锈钢、轴承钢; 表面处理:镀铬、镀镍、表面阳极氧化(直线轴承外固定座)等等; 我司目录收录的直线轴承是外壳轴承钢、内衬树脂保持架,表面没有处理的产品;带座直线轴承是以上普通直线轴承外镶铝合金座。 2、按形状分 开口型、封闭型; 直柱型、单衬型(普通型)、双衬型(加长型); 带法兰单衬型,带法兰双衬型; 两面切割法兰型、中间切割法兰型、四面切割法兰型; 带固定座加高方形(固定座材质铝合金,表面阳极氧化)、带固定座加宽方型等等。 3、按系列分 直线轴承按系列分,分为两大系列即LM和LME系列. LM系列用于亚洲,东南亚国家,日本,韩国,中国等。 LME系列多用于欧洲,美国,德国,意大利等地区。两大系列结构特点,除尺寸不同,孔径公差不同,其结构大致一样。 例1:LM 203242 UU OP LM 表示 直线第一系列标准 203242 表示尺寸结构 孔径 外径 长度 UU 表示双密封结构 OP 表示开口型 盘起订货代码 :LMUUOP20 例2:LME 203245 UU AJ LME 表示 直线第二系列标准 203245 表示尺寸结构 孔径 外径 长度 UU…

Read More

联轴器的相关知识

1.结构特点 A.结构简单,维护方便,能传递较大的扭矩; B.但对被联接的两轴间的相对位移缺乏补偿能力; C.对两轴的对中性要求很高,若两轴线发生相对位移,就会在轴、联轴器和轴承上引起附加载荷和严重磨损,严重影响轴与轴承的正常工作;此外,在传递载荷时不能缓和冲击和吸收振动。 2.应用场合 低速、大转矩、载荷平稳、短而刚性好的轴的连接 3.种类 凸缘联轴器和套筒联轴器两种。 4.凸缘联轴器结构特点 A.组成:两个带凸缘的半联轴器和一组螺栓; B.工作原理:两个带凸缘的半联轴器用键分别于两轴连接,然后用螺栓把两个半联轴器连接成一体,以传递运动和转矩。 C.对中方式:1、通过分别具有凸肩和凹槽的两个半联轴器的相互嵌合来对中,半联轴器采用普通螺栓联接;(靠预紧普通螺栓在凸缘边接触表面产生的摩擦力传递力矩;用铰制孔螺栓对中,靠螺杆承受挤压与剪切传递力矩。)2、两个半联轴器都制出凸肩,共同与一个剖分环配合而实现对中。 D.适用:低速、大转矩、载荷平稳、短而刚性好的轴的连接。 E.结构简单,传递扭矩大;传力可靠、对中性好;拆装简便、应用广泛;但不具有位移补偿功能;按标准选用。 5.套筒联轴器结构特点 A.组成:通过公用套筒与两轴采用键连接或销连接。 B.优点:结构简单,制造方便,成本低,径向尺寸小。 C.缺点:装拆时需轴向移动。 D.用场合:两轴直径较小、两轴对中性精度高、工作平稳的场合,用于传递转矩较小的场合。 6.分类要求 固定联轴器:要求被联接的两轴中心线严格对中; 可移式联轴器:允许两轴有一定的安装误差。 弹性联轴器:其中的弹性元件材料不同,能在一定范围内补偿两轴线间的位移,还有缓冲减震的作用。 7.位移补偿 联轴器所联接的两轴,由于制造及安装误差、承载后的变形、轴承磨损、回转零件不平衡以及温度变化的影响,两轴的轴线往往存在着某种程度的相对位移与偏斜; 联轴器要从结构上采取各种不同的措施,使联轴器具有补偿各种偏移量的性能,否则就会在轴、联轴器、轴承设计中引起附加载荷,导致工作情况恶化。 8.两轴间的位移种类有:轴向位移、径向位移、偏角位移和综合位移。 1.齿式联轴器 A.组成:两个带有内齿及凸缘的外套筒、 两个带外齿的内套筒; B.工作原理:两内套筒分别用键与两轴连接,两外套筒用螺栓连接,通过内外齿的啮合传递转矩和运动。 C.特点:为能补偿两轴的相对位移,将外齿环的轮齿做成鼓形齿,齿顶做成中心线在轴线上的球面,齿顶和齿侧留有较大的间隙。 通过啮合齿间的顶隙、侧隙,具备有允许两轴间有径向、轴向、角综合位移补偿的功能; 转速高(可达3500r/min),能传递很大的转矩(可达106N·m),并能补偿较大的综合位移,工作很高、对安装精度要求不高,要润滑; D.缺点:质量大,制造较困难,成本高。 E.应用:广泛用于汽车等大重型机械设备中。 2.十字滑块联轴器 A.结构特点:由半连轴器1、3(左、右套筒)和浮动盘2(十字滑块)联接在一起,两轴一起转动;浮动盘的凸榫可在半连轴器的凹槽中滑动;摩擦较大,要加以润滑。 B.优点:径向尺寸小,结构简单 C.缺点:但耐冲击性差,滑块与凹槽间易摩损,需润滑;十字滑块因径向位移会产生较大离心惯性力,而给轴和轴承带来附加载荷。 D.应用场合:常用于刚性大、转速低,冲击小的场合。 3.万向联轴器 A.结构:由一个十字轴、两个万向节叉、四个滚针轴承组成;所有转动副的回转中心(轴线)交于一点O,两轴间的夹角为α;是一种用以传递变夹角的相交两轴之间的运动的装置(联轴器)。 B.工作原理:当轴Ⅰ旋转一周时,轴Ⅱ也将随之转一周,即两轴的平均传动比为1;但是,两轴的瞬时传动比却不恒为1,而是作周期性变化的;万向节的这种特性称作瞬时传动比的不均匀性;就单个万向节而言,在输入轴与输出轴之间有夹角时,两轴的角速度不相等,即万向节有不等速性;两轴间的夹角α越大,从动轴速度波动越明显;故α应在35°~45°之间。为了防止主、从动轴角速度不相等;为了完全消除上述万向节中从动轴变速传动的缺点,常成对使用。 C.优点:具有较大的角向补偿能力,结构紧凑,传动效率高; D.缺点:在传动中将产生附加动载荷,转速不宜过高; E.应用场合:主要用于两轴相交的传动,重载、中载、轻载等中低速的场合,如机床、汽车。 F.双万向节应满足条件: 为了使该机构能获得恒定的传动比,机构要满足如下三个条件: (1)主动轴、从动轴、中间轴的三根轴线应位于同一平面内。 (2)主动轴、从动轴与中间轴的轴间夹角应相等: (3)中间轴两端的叉面应位于同一平面内。

电动缸出现噪音怎么办?

电动缸是将伺服电机与丝杠一体化规划的模块化产品,能够完成高精度直线运动,具有准确转速、转数、位置及推力等操控的才能。电动缸的噪音也是比较小的,但是假如用户在使用过程中发现电动缸出现很大的噪音,便需求及时进行排查处理。 电动缸一般不会作为独自产品运用,往往都是与其它配件相结合运用,电动缸假如出现问题,关于全体设备作业的影响是很大的,因而用户在遇到噪音故障时需求尽可能快的找到原因地点,为了可以第一时间找到噪音的问题,首要需求了解电动缸内部噪音发生的原因有哪些,本文接下来进行简单的介绍。 电动缸内部或许发生噪音的方面主要有以下几种: 第一种是电机发生的噪音,由于电时机进行高速工作,此刻会呈现啸声,假如呈现空载或许电缸脱开的现象,那么工作时的声响则会比较轻脆。 第二种是丝杠工作时发生的噪音,丝杆是在电机的运用下高速的工作的,其间的滚珠之间会发生相互磕碰的冲突,也会呈现声响,此种声响相对消沉。 第三种情况那儿是活塞杆螺母和缸筒间冲突的噪音,这两者之间需求运用光滑脂进行光滑,否则缸体容易发作损坏的情况。 第四种则是如果是平行式电动缸,那么同步带和齿带间便会发作咬合冲突的杂音,此种问题可通过调理张紧度来降低噪音。

主轴轴承的选型及转台轴承的选型

转台轴承的选型 数控机床中常用的回转工作台有分度工作台和数控回转工作台。数控机床在加工某些零件的时候,除了需要X、Y、Z三个坐标轴的直线进给运动外,有时候还需要有绕X、Y、Z三个坐标轴的圆周运动,分别称为A、B、C轴。数控回转工作台可用来实现圆周进给运动,除此之外,还可以完成分度运动。而分度工作台的功用只是将工件转位换面,和自动换刀装置配合使用,实现工件一次安装能完成几个面的多种工序,因此,大大提高了工作效率。数控转台的外形和分度工作台没有多大差别,但在结构上则具有一系列的特点。由于数控转台能实现进给运动,所以它在结构上和数控机床的进给驱动机构有许多共同之处。不同点是驱动机构实现的是直线进给运动,而数控转台实现的是圆周进给运动。 回转工作台广泛地使用于各种数控铣床、镗床、各种立车以及立铣等机床。除了要求回转工作台能很好地承受工件重量外,还需要保证其在承载下的回转精度。转台轴承,作为转台的核心部件,在转台运行过程中,不仅要具有很高的承载能力,还需具备高回转精度、高抗倾覆能力、以及较高的转速能力等。 2.1推力球轴承+圆柱滚子轴承 推力球轴承能承受一定的轴向力,所以该轴承主要用于承受工件的重量;而圆柱滚子轴承主要用于径向的定位和承受外部的径向力(例如切削力、铣削力等)。该类设计应用广泛,并且成本也相对比较低廉。由于推力球是一种点接触的轴承,所以它的轴向承载力相对比较有限,主要用于小型或中型的机床回转工作台。此外推力球的润滑也比较困难。 2.2静压轴承+精密圆柱滚子轴承 静压轴承是一种靠外部供给压力油,在轴承内建立静压承载油膜以实现润滑的滑动轴承。静压轴承从起动到停止始终在润滑下工作,所以没有磨损,使用寿命长,起动功率小;此外,这种轴承还具有旋转精度高,油膜刚度大,能抑制油膜振荡等优点。精密圆柱滚子轴承具有很好的径向承载力,并且由于采用了精密级的轴承,回转工作台的回转精度也能得到保证。使用该类设计的回转工作台能承受很高的轴向力,有些工件的重量超过200t以上,转台直径超过10m。但是该类设计也有一些不足之处,由于静压轴承必须附带一套专用的供油系统来供给压力油,维护比较复杂,而且成本也比较高。 2.3交叉滚子轴承 交叉滚子轴承在转台上的应用比较普遍。交叉滚子轴承的特征是轴承中有两个滚道,两排交叉排列的滚子。与传统的推力轴承+径向定心轴承组合相比,交叉滚子轴承结构紧凑、体积小巧,并简化了工作台设计,从而降低了转台的成本。由于使用了优化的预紧力,该类轴承具有很高的刚度,因而转台的刚度和精度也都得到了保证。得益于两排交叉滚子的设计,轴承的有效跨距能被显著提高,所以该类轴承具有很高的抗倾覆力矩。在交叉滚子轴承中,又分成两种类型:第一种是圆柱交叉滚子轴承,第二种是圆锥交叉滚子轴承。通常,圆柱交叉滚子轴承价格比圆锥交叉滚子轴承低,适用于转速相对较低的转台应用中;而圆锥交叉滚子轴承采用了圆锥滚子的纯滚动设计,具有运转精度高,转速能力强,减少了轴长度和加工成本等优势。交叉滚子轴承适用于各种类型的立式或卧式镗床,以及立磨、立车和大型齿轮铣床等应用。 主轴轴承的选型 用于机床主轴上的轴承精度应为ISOP5或以上(P5或P4是ISO的精度等级,通常从低到高为(P0、P6、P5、P4、P2),而对于数控机床、加工中心等高速、高精密机床的主轴支承,则需选用ISOP4或以上的精度。主轴轴承包括角接触球轴承、圆锥滚子轴承,以及圆柱滚子轴承等类型。 1.1精密角接触球轴承 精密角接触球轴承的使用广泛,角接触球轴承的滚动体是球,因为它是一种点接触(区别于滚子轴承的线接触),所以能提供更高的转速、更小的发热量和更高的旋转精度。在一些超高速的主轴应用场合,还会采用陶瓷球(一般为si3N4或者是Al203)的混合型轴承。与传统的全淬透钢球相比,陶瓷球材料自身的特点赋予了陶瓷球轴承具有高刚度、高转速、耐高温、寿命长的特点,从而满足高端客户对机床轴承产品的需求。 就角接触球轴承的接触角而言,目前比较流行的是15和25的接触角;通常15的接触角具有比较高的转速性能,而25的接触角具有较高的轴向承载能力。由于预载的选择对于精密角接触球轴承应用的影响非常大,如在高承载、高刚性的场合,一般会选用中型或重型的轴承预载;而针对一些高转速、高精度的应用场合,在轴承的早期选型中,需要注意选择合适的预载。预载一般分成轻型、中型、重型三种,一般轻预载比较常见。为了方便客户的使用,目前世界上的几大轴承制造商都普遍提供预先研磨轴承端面而加预载的轴承,也就是人们通常所说的万能配对精密角接触球轴承形式。该类轴承免去了客户的预载调节,从而节省了安装时间。 1.2精密圆柱滚子轴承 在机床主轴的应用中,双列精密圆柱滚子轴承也会被使用到,通常与精密角接触球轴承或推力轴承组合应用。此类轴承能承受较大的径向载荷并允许有较高的转速。轴承中的两列滚子以交叉方式排列,旋转时波动频率比单列轴承大幅提高,振幅降低60%-70%。此类轴承通常有两种形式:NN30、NN30K两个系列轴承内圈带挡边,外圈可分离;NNU49、NNU49K两个系列轴承外圈带挡边,内圈可分离,其中NN30K和NNU49K系列内圈为锥孔(锥度1:12),与主轴的锥形轴颈配合,轴向移动内圈,可使内圈胀大,这样轴承游隙可以被减小甚至预紧轴承(负游隙状态)。圆柱孔轴承通常采用热装,利用过盈配合减小轴承游隙,或者预紧轴承。对内圈可分离的NNU49系列轴承,一般在内圈装上主轴后再对滚道精加工,以提高主轴旋转精度。 1.3精密圆锥滚子轴承 在一些重载且对速度有一定要求的机床应用场合中,如锻件的荒磨、石油管道的车丝机、重型车床和铣床等,选择精密圆锥滚子轴承是一种比较理想的方案。由于圆锥滚子轴承的滚子是线接触的设计,因此它能为主轴提供很高的刚性和承载;另外,圆锥滚子轴承是一种纯滚动的轴承设计,它能很好地降低轴承运转扭矩和发热,从而确保主轴的转速和精度。由于圆锥滚子轴承能够在安装过程中调节轴向预载(游隙),这能让客户在轴承的整个使用周期中更好地优化轴承游隙调节。

怎样正确选择轴承 辨别轴承质量好坏的方法?

轴承型号一般是由用户的技术人员根据配套产品的使用条件及承受负荷对轴承进行选择。业务人员主要了解用户的实际负荷是否与所选轴承相符合,如果轴承达不到使用要求,应尽快建议客户改选型号,但除非特殊产品在选择型号上一般不会有什么问题。 1.油脂的选择 油脂的选择一般是根据轴承的转速、耐温情况、噪音要求及起动力矩等方面进行选择,要求业务人员对各种油脂的性能很了解。 2.轴承密封型式的选择 轴承的润滑可分为油润滑和脂润滑。油润滑轴承一般是选用形式轴承,脂润滑轴承一般选用防尘盖或橡胶密封件密封。防尘盖适用于高温或使用环境好的部位,密封件分接触。1、轴承型号的选择 轴承型号一般是由用户的技术人员根据配套产品的使用条件及承受负荷对轴承进行选择。业务人员主要了解用户的实际负荷是否与所选轴承相符合,如果轴承达不到使用要求,应尽快建议客户改选型号,但除非特殊产品在选择型号上一般不会有什么问题。 3.轴承游隙的选择 用户在购买轴承时一般只会告知在什么型号、等级,很少会对轴承的游隙提出要求,业务人员必须问清轴承的使用条件、其中轴承的转速、温度、配合公差都直接关系到轴承游隙的选择。一般在3500转/分以下转速的电机大多采用CM游隙,如高温高速电机则要求采用相对较大的游隙。轴承游隙在装配后会因为内孔的涨大及外圆的缩小而导致减少,游隙的减少量=过盈量×60%(轴承室是铝的除外)。比如轴承装配前游隙是0.01mm,装配时过盈量为0.01mm,则轴承装配后的游隙为0.004mm。在理论上轴承在零游隙时噪音和寿命都达到最佳的状态,但在实际运转中考虑到温升等问题,轴承在装配后游隙为0.002mm-0.004mm较好。 辨别轴承质量好坏的方法 下面向大家介绍几种辨别轴承质量的常用方法: 1.外包装是否明晰 一般情况下,正厂品牌都有自己专门的设计人员对外包装进行设计,并且安排生产条件过关的工厂进行制作生产,因此包装无论从线条到色块都非常清晰,毫不含糊。(部分进口轴承品牌的配件包装上还有专门用以保护自己的知识产权的独特设计)。 2.是否有杂响 左手握住轴承体内套,右手拨动外套使其旋转,听其是否有杂响。由于大部分仿冒产品的生产条件落后,完全手工作坊式操作,在生产过程中难免会掺进沙子一类的杂质,藏在轴承体内,所以在旋转的时候会发出杂响。这是和严格执行生产标准并用机器操作的正厂品牌之间最大的不同。 3.倒角是否均匀 所谓轴承的倒角,也就是横面与竖面的交接处,仿冒的轴承由于生产技术的限制,在这些边边角角的部位处理得不尽人意。 4.表面是否有浑浊的油迹 由于国内目前的防锈技术还不是特别到家,所以对轴承体进行防锈处理时很容易留下厚厚的油迹,拿在手上很粘稠,而国外原装进口的轴承上几乎看不到防锈油的痕迹,倒是特别细心的行家说进口轴承闻起来有一种味道,肯定是下了防锈油,只是看不到而已。这在购买进口轴承时应该特别注意。 5.钢印字是否清晰 在轴承体上会印有品牌字样、标号等。字体非常小,但是正厂出品大都使用钢印技术,而且在未经过热处理之前就进行压字,因此字体虽然小,但是凹得深,非常清晰。而仿冒产品的字体比较模糊,由于印字技术粗糙,字体浮于表面,有些甚至轻易地就可以用手抹去。

联轴器的几个分类和特点

鼓形齿式联轴器 鼓形齿式联轴器作为一种传动装置的鼓形齿联轴器,是由普通直齿联轴器发展演变而来的,鼓形齿联轴器在国外许多先进的工业国家已有种种标准及系列产品,由两个鼓形外齿套与一对直齿内齿齿圈等零件组成。 靠内,外齿的啮合传递转矩,并通鼓形外齿套的直齿的内齿圈的轴线摆动(称角向位移)来补偿俩传动轴线的相对偏移。齿长方向的鼓度越大,其角向位移越大,最大达6°,一般使用推荐1°~1.5°,而旧的齿轮联轴器只允许0.5°;从弯曲强度和承载能力来看,在相同的工作条件下鼓形齿联轴器传递扭矩可提高15~20%。 齿长方向的鼓度,使齿对接触情况较好,因此鼓形齿式联轴器有传动能力大、角位移大、传动平稳、效率高、寿命长等优点。因此逐步取代直齿联轴器,并广泛用于冶金机械,重型、矿山机械,起重、运输机械等传动。 大转矩鼓型齿联轴器承载冲击性能好,但齿面接触应力和齿根弯曲疲劳强度要求高,如果我们采取特殊结构、特殊材料、特殊工艺,那么该联轴器就能够满足大直径轧管机的要求。 膜片联轴器 膜片联轴器适用于高温、高速、有腐蚀介质工况环境的轴系传动,如水泵(尤其是大功率、化工泵)、风机、压缩机、液压机械、石油机械、印刷机械、纺织机械、化工机械、矿山机械、冶金机械、航空(直升飞机)、舰艇高速动力传动系统、汽轮机、活塞式动力机械传动系统、履带式车辆,以及发电机组高速、大功率机械传动系统,经动平衡后应用于高速传动轴系已比较普遍。 膜片联轴器与齿式联轴器相比,没有相对滑动,不需要润滑、密封,无噪声,基本不用维修,制造方便,可部分代替齿式联轴器。膜片联轴器在国际上工业发达国家应用已很普通,在我国已制订机械行业标准,已修订为新的行业标准:JB/T 9147-1999(代替ZB/T J19022-90) 联轴器各转矩间的关系。 梅花形弹性联轴器 梅花弹性联轴器主要适用于起动频繁、正反转、中高速、中等扭矩和要求高可靠性的工作场合,例如:冶金、矿山、石油、化工、起重、运输、轻工、纺织、水泵、风机等。工作环境温度 -35℃~+80℃,传递公称扭矩25~12500Nm,许用转速1500~15300r/min。 梅花形弹性联轴器主要由两个带凸齿密切啮合并承受径向挤压以传递扭矩,当两轴线有相对偏移时,弹性元件发生相应的弹性变形,起到自动补偿作用。 滑块联轴器 滑块联轴器与十字滑块联轴器结构相似,不同之处在于中间十字滑块为方形滑块,利用中间滑块在其两侧半联轴器端面的相应径向槽内滑动,以实现两半联轴器联接。 该联轴器噪声大,效率低,磨损快,一般尽量不选用,只有转速很低的场合,本标准所规定的滑块联轴器,适用于油泵装置或其它传递扭矩较小的场合,具有一定补偿两轴相对偏移量,减震和缓冲性能;其工作温度为-20~70°C。传递公称扭矩为16~500N.m。 十字滑块联轴器 十字滑块联轴器零件的材料可用45钢,工作表面需要进行热处理,以提高其硬度;要求较低时也可用Q275钢,不进行热处理。为了减少摩擦及磨损,使用时应从中间盘的油孔中注油进行润滑。 十字滑块联轴器又名金属滑块联轴器,其滑块呈圆环形,用钢或耐磨合金制成,适用于转速较低,传递转矩较大的传动。 十字滑块联轴器由两个在端面上开有凹槽的半联轴器和一个两面带有凸牙的中间盘组成。因凸牙可在凹槽中滑动,故可补偿安装及运转时两轴间的相对位移。因为半联轴器与中间盘组成移动副,不能发生相对转动,故主动轴与从动轴的角速度应相等。

梅花联轴器如何安装使用?

梅花联轴器如何安装使用? 1 、安装前应首先检查原动机和工作机两轴是否同心,两轴表面是否有包装纸和碰伤。 梅花联轴器两个半联轴节内孔是否有杂物,内孔棱边是否有碰伤、如有应将轴、半联轴节清理干净,碰伤用细锉处理好。 然后检查两个半联轴节的内孔直径和长度是否同原动机、工作机的直径和轴伸长度尺寸相符。一般选型时,让原动机和工作机端半联轴节长度小于其轴伸长度10— 30mm为好。 2、 为了便于安装,最好是将两个半联轴节放在120150的保温箱或油槽中进行预热,使内孔尺寸涨大很容易装上。 安装后保证轴头不能凸出半联轴节端面,以齐平为好。检测两半联轴节之间的距离:沿半联轴节的法兰盘两内侧测出34点的读数取平均值,及加长段与两个膜片组实测尺寸之和,两者误差控制在0—04mm范围之内。 3 、找正:用百分表检测两半联轴节法兰盘端面和外圆跳动,当法兰盘外圆小于250mm时跳动值应不大于005mm;当法兰盘外圆大于250mm时,跳动值应不大于008。 4、安装螺栓:把螺栓从法兰盘小孔外侧穿入,从另一件法兰盘大孔外侧穿出套上缓冲套、弹性垫圈、扭上螺母,用扳手将螺母把紧。如安装不适或拆除更换,又不损伤轴及半联,安装完毕后,转动自如无别劲为好。 5、 操作工须知:梅花联轴器在启动设备前应先检查梅花联轴器的螺母是否有松动或脱落,如有要及时将螺母用扳手把紧。应先空载启动设备1分钟后将负载管线阀门打开;停机顺序相反。(请每月将联轴器外部用机油涂刷一遍)。 6、实践证明,如按说明及要求进行安装、维护、操作、梅花联轴器的日启动次数在15次,联轴器的使用寿命最少5年以上,如不按说明书的要求进行安装、维护、操作,特别是螺栓方向装错使联轴器变形或原动机与工作机两轴轴心偏移过大都会使联轴器提前损坏。 梅花联轴器安装过程中注意事项 梅花联轴器的结构简单,零件数少,径向尺寸小,无需润滑;弹性元件受压承载能力较高。除双法兰型梅花形弹性联轴器外,更换易损件梅花形弹性件时,均需轴向移动半联轴器。这种联轴器对两轴相对偏移有一定的补偿力。 梅花弹性联轴器是将一个整体的梅花形弹性环装在两个形状相同的半联轴器的凸爪之间,以实现两半联轴器的连接。通过凸爪与弹性环之间的挤压传递动力,通过弹性环的弹性变形补偿两轴相对偏移,实现减振缓冲。每种形式均有14个规格,它们适用的轴孔直径d=12160mm,轴孔长度L=35135mm,公称转矩T=2525000Nm,许用转速[n]=150015300rmin。 这种联轴器已标准化,GB/T52722002制定的五种结构形式:LM形(基本型)、LMD型(单法兰型)、LMS型(双法兰型)、LMZI型(分体式制动轮型)和LNZII(整全式制动轮型)。 适用范围和性能特点: (1)工作稳定可靠,具有良好的减振、缓冲和电绝缘性能。 (2)结构简单,径向尺寸小,重量轻,转动惯量小,适用于中高速场合。 (3)具有较大的轴向、径向和角向补偿能力。 (4)高强度聚氨酯弹性元件耐磨耐油,承载能力大,使用寿命长,安全可靠。 (5)联轴器无需润滑,维护工作量少,可连续长期运行。 根据其性能及用途可分为: 梅花形弹性联轴器、伺服电机用梅花联轴器、夹紧式梅花联轴器等。具有键槽式、夹紧式、加长式、法兰式等诸多类型可供选择; 梅花形弹性联轴器的特点是: 1.紧凑型、无齿隙,提供三种不同硬度弹性体; 2.可吸收振动,补偿径向和角向偏差; 3.结构简单、方便维修、便于检查; 4.免维护、抗油及电气绝缘、工作温度20℃60℃; 5.梅花弹性体有四瓣、六瓣、八瓣和十瓣; 6.固定方式有顶丝,夹紧,键槽固定。 梅花联轴器的工作原理 是将一个整体的梅花形弹性环装在两个形状相同的半联轴器的凸爪之间,以实现两半联轴器的连接。本联轴器广泛使用于水泵、油泵、机床等行业。通过凸爪与弹性环之间的挤压传递动力,通过弹性环的弹性变形补偿两轴相对偏移,实现减振缓冲。 梅花弹性联轴器,顾名思义,因其弹性体梅花形状而得此名,根据弹性体材质不同可分为:橡胶形梅花联轴、聚氨酯梅花联轴器;通常采纳的弹性体为聚氨酯。

电机用轴承的型号有哪些?

电机常用轴承型号 Y2系列电机轴承 轴伸端:6201-2E-C3、6202-2E-C3、6204-2E-C3、6205-2E-C3、6206-2E-C3、6308-2E-C3、6311-C3、6312-C3、6313-C3、6314-C3、6317-C3、6319-C3、NU319、NU322 风扇端:6201-2E-C3、6202-2E-C3、6204-2E-C3、6205-2E-C3、6206-2E-C3、6308-2E-C3、6309-2E-C3、6311-C3、6312-C3、6313-C3、6314-C3、6317-C3、6319-C3、6322-C3 YSJ系列压缩机专用电机轴承 轴伸端:6204-2E-C3、6205-2E-C3、6206-2E-C3、6308-2E-C3、6309-2E-C3、6311-C3、6312-C3、6313-C3、6314-C3、6317-C3、6319、6319-C3、6322 风扇端:6204-2E-C3、6205-2E-C3、6206-2E-C3、6308-2E-C3、6309-2E-C3、6311-C3、6312-C3、6313-C3、6314-C3、6317-C3、6319-C3、6322-C3 电机轴承也叫电动机轴承或者马达轴承,是专门应用于电动机或者马达上的一种专用轴承产品。电机使用的轴承是一个支撑轴的零件,它可以引导轴的旋转,也可以承受轴上空转的部件,概念很宽泛。电机常用的轴承有四种类型,即滚动轴承、滑动轴承、关节轴承和含油轴承。最常见的电机轴承是滚动轴承,即有滚动体的轴承。滑动轴承泛指没有滚动体的轴承,即作滑行运动的轴承。 电机轴承代号构成: 1.前置代号—表示轴承的分部件。 2.基本代号—表示轴承的类型与尺寸等主要特征。 3.后理代号—表示轴承的精度与材料的特征。 电动机用轴承还有很多,常见搭配组合的有深沟球轴承与圆柱滚子轴承组合、角接触球轴承与圆柱滚子轴承的组合等。

弹性联轴器的选型计算

1.什么是联轴器 用于连接驱动装置与被驱动装置,以达到将驱动装置的转动传递到被驱动装置的产品。 驱动装置一般是:电动机、柴油机、蒸汽机等,或是齿轮箱。 被驱动装置就非常多了,常见的有 丝杠、 水泵、空压机、鼓风机、轮毂、齿轮箱等。 为什么需要用性联轴器 安装驱动装置与被驱动装置时不能保证两根轴完全对中。 即使安装时精度很高,但随着设备运行时间久了,不能避免设备基座沉降或偏移,从而在两轴间出现偏差。 轴间偏差一般体现在3个方向:角向、轴向、径向。同时,驱动装置的非均衡输出的扭力(即扭力振动)也被考虑为轴间偏差的一种。 两轴的不对中会造成设备运转时震动加剧、噪声增大、加剧轴上轴承的磨损甚至损坏油封。同时,由于两轴的不对中而产生的应力也会增加轴的负荷,长此以往将严重影响轴及设备的寿命。 为避免以上情况出现,保护后继设备,需要在两轴间设立一种挠性连接,来容忍和适当补偿这种偏差——这就是挠性联轴器。 挠性联轴器通过其中弹性部件的变形来承受偏差产生的额外应力,同时有效传输动力。 根据不同方向的偏差、传递不同的动力、运用于不同的场合等要求,Banna设计了多种不同结构形式的联轴器。 联轴器的分类:刚性联轴器 挠性联轴器 还分别有非金属挠性联轴器与金属联轴器刚性联轴器即将两根设备轴以刚性的方式来连接,仅起到传递动力的作用,没有任何补偿轴间偏差的作用。因此刚性联轴器具有较高的传动精度(能同步传动),但不具备保护后继设备的功能。典型产品:套筒式联轴器 挠性联轴器不仅能够传递动力,其中的挠性部件还能够有效容忍和补偿轴间的偏差,部分挠性联轴器还能有效缓解设备震动。因此虽然部分联轴器不能完全同步传动,但挠性联轴器的最大好处在于能够保护后继设备,延长设备的使用寿命。 非金属弹性联轴器: 优点: 扭力柔软,能承受的偏移量比全金属产品更大; 良好的缓解震动、吸收冲击的能力; 无须日常润滑和维护; 有多种形式和材质的弹性体可供选择以满足不同的需要 对轴上轴承的反作用力较小; 相对全金属产品,同样的开孔要求情况下,非金属产品价格更低 全金属弹性联轴器: 优点: 扭力硬,传动精度高; 耐高温,耐化学侵蚀; 在高扭矩的要求下,全金属产品体积更小,所需安装空间更小; 能承受更高转速的运转,能适应更大的轴径范围; 可制成全不锈钢产品; 许多产品都能够满足零回转要求。 非金属弹性联轴器: 局限: 不能应用于高温或有一定耐化学侵蚀要求的场合; 由于扭力软,往往无法精确传动。除QS产品外,都不能满足零回转要求; 同样的扭矩要求下,体积较大,所需空间更多; 部分形式的产品没有很好的超扭矩负荷能力。 全金属弹性联轴器: 局限: 疲劳和磨损是导致产品失效的主要原因; 部分产品需要日常润滑维护; 往往有多个部件组成,组装繁琐;同时大部分产品需要非常仔细的组装; 往往没有很好的缓震或吸收冲击的能力; 全金属产品无法应用于有绝缘要求的场合。 如何选择合适的联轴器 没有万能的联轴器——任何一种形式的联轴器都有其独到之处,也有其不能完成的任务。 选择合适的联轴器就必须了解使用联轴器的环境和目的。 使用联轴器的环境 驱动装置的情况——驱动装置的名称、驱动功率(Kw)、驱动转速(转/分)、驱动端输出形式(轴、法兰、飞轮等)和尺寸。 被驱动装置的情况——被驱动装置的名称、被驱动端输入形式(轴、法兰、飞轮等)和尺寸。 两装置之间的情况——两者之间的空间有无要求或限制、两者的位置情况(垂直或水平)。 周围环境情况——环境温度、有无化学侵蚀、露天或室内以及其他需要特别关注的情况使用联轴器的目的传递扭力方面:是否需要额外的安全系数;…

Read More