联轴器分类及工作原理

联轴器在实际应用中根据所传递转矩大小可分为重型、中型、小型和轻型。 重型万向联轴器常用于冶金机械、重型机械、石油机械、工程机械、起重机械。 中型和轻型万向联轴器常用于汽车、机床等车辆和轻工机械等。 小型万向联轴器主要是传递运动,一般用于精密机械和控制机构。那么怎么选择合适联轴器,使用的时候又有哪些注意事项呢? 1.联轴器的应用选择 1. 由于制造、安装、受载变形和温度变化等原因,当安装调整后,难以保持两轴严格精确对中。 存在一定程度的X、Y方向位移和偏斜角CI。当径向位移较大时,可选滑块联轴器,角位移较大或相交两轴的联接可选用万向联轴器等。当工作过程中两轴产生较大的附加相对位移时,应选用挠性联轴器。 2. 联轴器的工作转速高低和引起的离心力大小。 对于高速传动轴,应选用平衡精度高的联轴器,例如膜片联轴器等,而不宜选用存在偏心的滑块联轴器等。 3. 所需传递的转矩大小和性质以及对缓冲减振功能的要求。 例如,对大功率的重载传动,可选用齿式联轴器;对严重冲击载荷或要求消除轴系扭转振动的传动,可选用轮胎式联轴器等具有高弹性的联轴器。 4. 联轴器的工作转速高低和引起的离心力大小。 对于高速传动轴,应选用平衡精度高的联轴器,例如膜片联轴器等,而不宜选用存在偏心的滑块联轴器等。 5. 两轴相对位移的大小和方向。 当安装调整后,难以保持两轴严格精确对中,或工作过程中两轴将产生较大的附加相对位移时,应选用挠性联轴器。例如当径向位移较大时,可选滑块联轴器,角位移较大或相交两轴的联接可选用万向联轴器等。 6. 联轴器的可靠性和工作环境。 通常由金属元件制成的不需润滑的联轴器比较可靠;需要润滑的联轴器,其性能易受润滑完善程度的影响,且可能污染环境。含有橡胶等非金属元件的联轴器对温度、腐蚀性介质及强光等比较敏感,而且容易老化。 7. 联轴器的制造、安装、维护和成本。 在满足便用性能的前提下,应选用装拆方便、维护简单、成本低的联轴器。例如刚性联轴器不但结构简单,而且装拆方便,可用于低速、刚性大的传动轴。一般的非金属弹性元件联轴器(例如弹性套柱销联轴器、弹性柱销联轴器、梅花形弹性联轴器等),由于具有良好的综合能力,广泛适用于一般的中、小功率传动。 2.联轴器的使用注意事项 01.联轴器不允许有超过规定的轴心线歪斜和径向位移,以免影响其传动性能。 02.万向联轴器安装好以后,正常运转一个班,必须检查所有紧固螺钉,如发现松动,必须以规定的拧紧力矩再次拧紧,这样反复几个班,以保证不会松动。 03.万向联轴器滑动面、十字头、轴承等必须保证润滑,一般用2#工业锂基油脂或2#二硫化钼钙基脂,在一般条件下连续运转500小时加油一次,间断运转2个月加油一次,若高温条件下工作必须每周加油一次,加油时把轴承端面油孔螺钉拧下,用高压油枪注入至溢出为止。 04.联轴器日常保养时,如发现压痕等正常磨损现象,应及时更换;联轴器不允许有裂纹存在,如有裂纹则需更换(可用小锤敲击,根据声音判断);在保养拆洗时,将十字轴调转180°,以达到轴颈受力交替使用。 05.齿轮联轴器齿宽接触长度不得小于70%;其轴向窜动量不得大于5mm。 06.齿轮联轴器的齿厚磨损,对起升机构超过原齿厚的15%时,对运行机构超过25%时应报废,有断齿时也应报废。 07.柱销联轴器的弹性圈,齿轮联轴器的密封圈,如有损坏老化,要注意及时更换。 08.在工作运转中,应经常观察万向联轴器是否发生异常的径向摆动和轴承发热等现象,发现这些现象必须及时维修。

联轴器有哪些种类?

联轴器有哪些分类呢? 1.齿式联轴器 GICL鼓型齿式联轴器 GICLZ鼓形齿式联轴器 GⅡCL鼓形齿式联轴器 GⅡCLZ鼓形齿式联轴器 GCLD鼓型齿式联轴器 TGL尼龙内齿圈联轴器 2.轮胎式联轴器 UL 型轮胎式联轴器 LA 型轮胎式联轴器 LB 型轮胎式联轴器 DL 多角形橡胶联轴器 3.星形弹性联轴器 XL 系列星形弹性联轴器 LXD单法兰星形联轴器 XLS双法兰型星形联轴器 LXZ带制动轮星形联轴器 LXP带制动盘型联轴器 LXT接中间套型联轴器 LXJ接中间轴星形联轴器 LXQ接中间轴球铰联轴器 4.梅花形弹性联轴器 LM(原ML)梅花联轴器 LMS(原MLS)梅花联轴器 LMD(原MLZ)梅花联轴器 LMZI(MLLI)梅花联轴器 LMZⅡ(MLLⅡ)联轴器 带制动轮梅花形弹性联轴器 5.万向联轴器 万向联轴器有多种结构型式,例如:十字轴式、球笼式、球叉式、凸块式、球销式、球铰式、球铰柱塞式、三销式、三叉杆式、三球销式、铰杆式等,最常用的为十字轴式,其次为球笼式,万向联轴器的共同特点是角向补偿量较大,不同结构型式万向联轴器两轴线夹角不相同,一般≤5°-45°之间。万向联轴器利用其机构的特点,使两轴不在同一轴线,存在轴线夹角的情况下能实现所联接的两轴连续回转,并可靠地传递转矩和运动。万向联轴器最大的特点是具有较大的角向补偿能力,结构紧凑,传动效率高。在实际应用中根据所传递转矩大小分为重型、中型、轻型和小型。 膜片型联轴器 6.单节膜片联轴器 单膜片联轴器G8S,特性:大扭矩承载、高扭矩刚性和卓越灵敏度;免维护、超强抗油和耐腐蚀性;零回转间隙;体积小巧的联轴器,总长度短 ;不锈钢膜片补偿角向轴向偏差 ;顺时针与逆时针回转特性完全相同 双膜片联轴器G8L,特性:双膜片不锈纲膜片容许偏角,偏心及轴向偏差;免维护、超强抗油和耐腐蚀性;零回转间隙;体积小巧的联轴器,总长度长 ;不锈钢膜片补偿角向轴向偏差 ;顺时针与逆时针回转特性完全相同

减速机轴承发响的30种原因!

1.油脂有杂质; 2. 润滑不足(油位太低,保存不当导致油或脂通过密封漏损); 3. 轴承的游隙太小或太大(生产厂问题); 4. 轴承中混入砂粒或碳粒等杂质,起到研磨剂作用; 5. 轴承中混入水份,酸类或油漆等污物,起到腐蚀作用; 6. 轴承被座孔夹扁(座孔的圆度不好,或座孔扭曲不直); 7. 轴承座的底面的垫铁不平(导致座孔变形甚至轴承座出现裂纹); 8. 轴承座孔内有杂物(残留有切屑,尘粒等); 9. 密封圈偏心(碰到相邻零件并发生摩擦); 10.轴承受到额外载荷(轴承受到轴向蹩紧,或一根轴上有两只固定端轴承); 11.轴承与轴的配合太松(轴的直径偏小或紧定套未旋紧); 12.轴承的游隙太小,旋转时过紧(紧定套旋紧得过头了); 13.轴承有噪声(滚子的端面或钢球打滑造成); 14.轴的热伸长过大(轴承受到静不定轴向附加负荷); 15.轴肩太大(碰到轴承的密封件并发生摩擦); 16.座孔的挡肩太大(把轴承发的密封件碰得歪曲); 17.迷宫式密封圈的间隙太小(与轴发生摩擦); 18.锁紧垫圈的齿弯曲(碰到轴承并发生摩擦); 19.甩油圈的位置不合适(碰到法兰盖并发生摩擦); 20.钢球或滚子上有压坑(安装时用锤子敲打轴承所造成); 21.轴承有噪音(有外振源干扰); 22.轴承受热变色并变形(使用喷枪加热拆卸轴承所造成); 23.轴太粗使实际配合过紧(造成轴承温度过高或发生噪音); 24.座孔的直径偏小(造成轴承温度过高); 25.轴承座孔直径过大,实际配合太松(轴承温度过高–外圈打滑); 26.轴承座孔变大(有色金属的轴承座孔被撑大,或因热膨胀而变大); 27.保持架断裂 。 28.轴承滚道生锈。 29.钢球、滚道磨损(磨加工不合格或产品有碰伤)。 30.套圈滚道不合格(生产厂问题)。

选择联轴器的因素及联轴器选型标准有哪些?

选择联轴器的因素: 1.纠偏能力 纠偏能力是指弹性联轴器其弹性体本身所具有的弹性能承受的径向、角向、轴向的恢复能力。根据机械和使用场合本身需求连接的精密度、误差的不同,选用不同纠偏能力的联轴器,来纠正机械产生的误差,达到延长电机和丝杆或其它传动器件的使用寿命。 2.载荷类别 由于结构和材料不同,用于各个机械产品传动系统的联轴器,其载荷能力差异很大。载荷类别主要是针对工作机的工作载荷的冲击、振动、正反转、制动、频繁启动等原因而形成不同类别的载荷。传动系统的载荷类别是选择联轴器品种的基本依据。 3.动力机的机械特性 动力机到工作机之间,通过一个或数个不同品种型号、规格的联轴器将主、从动端联接起来,形成轴系传动系统。由于动力机工作原理和机构不同,其机械特性差别较大,对传动系统形成不等的影响。不同类别的动力机,由于其机械特性不同,应选取相应的动力机系数KW,选择适合于该系统的最佳联轴器。动力机的类别是选择联轴器品种的基本因素,动力机的功率是确定联轴器性能的主要依据之一,与联轴器转矩成正比。 4.联轴器的许用转速 联轴器的许用转速范围是根据联轴器不同材料允许的线速度和最大外缘尺寸,经过计算而确定。不同材料和品种、规格的联轴器许用转速的范围不相同,改变联轴器的材料可提高联轴器许用转速范围,这个取决于不同的机械类别。 5.工作环境 联轴器与各种不同主机产品配套使用,周围的工作环境比较复杂,如温度、湿度、水、蒸汽、粉尘、砂子、油、酸、碱、腐蚀介质、盐水、辐射等状况,选择联轴器时必须考虑的重要因素之一。环境的不同,所选用的联轴器材料也不同。 联轴器选型标准有哪些? 1.GB/T4323-2002 弹性套柱销联轴器 2003-04-01实施,代替GB/T 4323-1984 2.GB/T5272-2002 梅花形弹性联轴器 2003-04-01实施,代替GB/T 5272-1985 3.GB/T5844-2002 轮胎式联轴器 2003-04-01实施,代替GB/T 5844-1986 4.GB/T6069-2002 滚子链联轴器 2003-04-01实施,代替GB/T 6069-1985 5.GB/T5014-2003 弹性柱销联轴器 2003-12-01实施,代替GB/T 5014-1985 6.GB/T5015-2003 弹性柱销齿式联轴器 2003-12-01实施,代替GB/T 5015-1985 7.GB/T5843-2003 凸缘联轴器 2003-12-01实施,代替GB/T 5843-1986 8.GB/T12458-2003 联轴器分类 2003-12-01实施,代替GB/T 12458-1990 9.GB/T12922-2008 弹性阻尼簧片联轴器 2008-09-01实施,代替GB/T 12922-1991 10.GB/T14653-2008 挠性杆联轴器 2008-09-01实施,代替GB/T 14653-1993 11.GB/T2496-2008 弹性环联轴器 2008-12-15实施,代替GB/T…

Read More

直线轴承使用技巧

一、基本概念: 直线轴承是一种精度高、成本低、摩擦阻力小的直线运动系统。直线轴承是和导向轴组合使用的,利用滚珠的滚动运动实现无限直线运动的直动系统。 由于承载球与轴呈点接触,故使用载荷小。钢球以极小的磨擦阻力旋转,从而能获得高精度的平稳运动 二、结构 三、 工作过程 直线轴承是在外圈之内装有钢球保持架,保持架装有多个滚球,滚珠作无限循环运动。保持架的两端以密封垫挡圈固定,在各钢球受力工作的直线轨道方向上设有缺口窗,此部分是使受载荷的钢球与轴作滚动接触,用非常低的磨擦系数相对移动。 因此直线球轴承为机械设备、自动化设备、节能设备等最合适选用的轴承。 四、分类: 1、按材质分 外壳:不锈钢、轴承钢、铝合金(带座直线轴承); 保持:有树脂、不锈钢、轴承钢; 表面处理:镀铬、镀镍、表面阳极氧化(直线轴承外固定座)等等; 我司目录收录的直线轴承是外壳轴承钢、内衬树脂保持架,表面没有处理的产品;带座直线轴承是以上普通直线轴承外镶铝合金座。 2、按形状分 开口型、封闭型; 直柱型、单衬型(普通型)、双衬型(加长型); 带法兰单衬型,带法兰双衬型; 两面切割法兰型、中间切割法兰型、四面切割法兰型; 带固定座加高方形(固定座材质铝合金,表面阳极氧化)、带固定座加宽方型等等。 3、按系列分 直线轴承按系列分,分为两大系列即LM和LME系列. LM系列用于亚洲,东南亚国家,日本,韩国,中国等。 LME系列多用于欧洲,美国,德国,意大利等地区。两大系列结构特点,除尺寸不同,孔径公差不同,其结构大致一样。 例1:LM 203242 UU OP LM 表示 直线第一系列标准 203242 表示尺寸结构 孔径 外径 长度 UU 表示双密封结构 OP 表示开口型 盘起订货代码 :LMUUOP20 例2:LME 203245 UU AJ LME 表示 直线第二系列标准 203245 表示尺寸结构 孔径 外径 长度 UU…

Read More

联轴器的相关知识

1.结构特点 A.结构简单,维护方便,能传递较大的扭矩; B.但对被联接的两轴间的相对位移缺乏补偿能力; C.对两轴的对中性要求很高,若两轴线发生相对位移,就会在轴、联轴器和轴承上引起附加载荷和严重磨损,严重影响轴与轴承的正常工作;此外,在传递载荷时不能缓和冲击和吸收振动。 2.应用场合 低速、大转矩、载荷平稳、短而刚性好的轴的连接 3.种类 凸缘联轴器和套筒联轴器两种。 4.凸缘联轴器结构特点 A.组成:两个带凸缘的半联轴器和一组螺栓; B.工作原理:两个带凸缘的半联轴器用键分别于两轴连接,然后用螺栓把两个半联轴器连接成一体,以传递运动和转矩。 C.对中方式:1、通过分别具有凸肩和凹槽的两个半联轴器的相互嵌合来对中,半联轴器采用普通螺栓联接;(靠预紧普通螺栓在凸缘边接触表面产生的摩擦力传递力矩;用铰制孔螺栓对中,靠螺杆承受挤压与剪切传递力矩。)2、两个半联轴器都制出凸肩,共同与一个剖分环配合而实现对中。 D.适用:低速、大转矩、载荷平稳、短而刚性好的轴的连接。 E.结构简单,传递扭矩大;传力可靠、对中性好;拆装简便、应用广泛;但不具有位移补偿功能;按标准选用。 5.套筒联轴器结构特点 A.组成:通过公用套筒与两轴采用键连接或销连接。 B.优点:结构简单,制造方便,成本低,径向尺寸小。 C.缺点:装拆时需轴向移动。 D.用场合:两轴直径较小、两轴对中性精度高、工作平稳的场合,用于传递转矩较小的场合。 6.分类要求 固定联轴器:要求被联接的两轴中心线严格对中; 可移式联轴器:允许两轴有一定的安装误差。 弹性联轴器:其中的弹性元件材料不同,能在一定范围内补偿两轴线间的位移,还有缓冲减震的作用。 7.位移补偿 联轴器所联接的两轴,由于制造及安装误差、承载后的变形、轴承磨损、回转零件不平衡以及温度变化的影响,两轴的轴线往往存在着某种程度的相对位移与偏斜; 联轴器要从结构上采取各种不同的措施,使联轴器具有补偿各种偏移量的性能,否则就会在轴、联轴器、轴承设计中引起附加载荷,导致工作情况恶化。 8.两轴间的位移种类有:轴向位移、径向位移、偏角位移和综合位移。 1.齿式联轴器 A.组成:两个带有内齿及凸缘的外套筒、 两个带外齿的内套筒; B.工作原理:两内套筒分别用键与两轴连接,两外套筒用螺栓连接,通过内外齿的啮合传递转矩和运动。 C.特点:为能补偿两轴的相对位移,将外齿环的轮齿做成鼓形齿,齿顶做成中心线在轴线上的球面,齿顶和齿侧留有较大的间隙。 通过啮合齿间的顶隙、侧隙,具备有允许两轴间有径向、轴向、角综合位移补偿的功能; 转速高(可达3500r/min),能传递很大的转矩(可达106N·m),并能补偿较大的综合位移,工作很高、对安装精度要求不高,要润滑; D.缺点:质量大,制造较困难,成本高。 E.应用:广泛用于汽车等大重型机械设备中。 2.十字滑块联轴器 A.结构特点:由半连轴器1、3(左、右套筒)和浮动盘2(十字滑块)联接在一起,两轴一起转动;浮动盘的凸榫可在半连轴器的凹槽中滑动;摩擦较大,要加以润滑。 B.优点:径向尺寸小,结构简单 C.缺点:但耐冲击性差,滑块与凹槽间易摩损,需润滑;十字滑块因径向位移会产生较大离心惯性力,而给轴和轴承带来附加载荷。 D.应用场合:常用于刚性大、转速低,冲击小的场合。 3.万向联轴器 A.结构:由一个十字轴、两个万向节叉、四个滚针轴承组成;所有转动副的回转中心(轴线)交于一点O,两轴间的夹角为α;是一种用以传递变夹角的相交两轴之间的运动的装置(联轴器)。 B.工作原理:当轴Ⅰ旋转一周时,轴Ⅱ也将随之转一周,即两轴的平均传动比为1;但是,两轴的瞬时传动比却不恒为1,而是作周期性变化的;万向节的这种特性称作瞬时传动比的不均匀性;就单个万向节而言,在输入轴与输出轴之间有夹角时,两轴的角速度不相等,即万向节有不等速性;两轴间的夹角α越大,从动轴速度波动越明显;故α应在35°~45°之间。为了防止主、从动轴角速度不相等;为了完全消除上述万向节中从动轴变速传动的缺点,常成对使用。 C.优点:具有较大的角向补偿能力,结构紧凑,传动效率高; D.缺点:在传动中将产生附加动载荷,转速不宜过高; E.应用场合:主要用于两轴相交的传动,重载、中载、轻载等中低速的场合,如机床、汽车。 F.双万向节应满足条件: 为了使该机构能获得恒定的传动比,机构要满足如下三个条件: (1)主动轴、从动轴、中间轴的三根轴线应位于同一平面内。 (2)主动轴、从动轴与中间轴的轴间夹角应相等: (3)中间轴两端的叉面应位于同一平面内。

电动缸出现噪音怎么办?

电动缸是将伺服电机与丝杠一体化规划的模块化产品,能够完成高精度直线运动,具有准确转速、转数、位置及推力等操控的才能。电动缸的噪音也是比较小的,但是假如用户在使用过程中发现电动缸出现很大的噪音,便需求及时进行排查处理。 电动缸一般不会作为独自产品运用,往往都是与其它配件相结合运用,电动缸假如出现问题,关于全体设备作业的影响是很大的,因而用户在遇到噪音故障时需求尽可能快的找到原因地点,为了可以第一时间找到噪音的问题,首要需求了解电动缸内部噪音发生的原因有哪些,本文接下来进行简单的介绍。 电动缸内部或许发生噪音的方面主要有以下几种: 第一种是电机发生的噪音,由于电时机进行高速工作,此刻会呈现啸声,假如呈现空载或许电缸脱开的现象,那么工作时的声响则会比较轻脆。 第二种是丝杠工作时发生的噪音,丝杆是在电机的运用下高速的工作的,其间的滚珠之间会发生相互磕碰的冲突,也会呈现声响,此种声响相对消沉。 第三种情况那儿是活塞杆螺母和缸筒间冲突的噪音,这两者之间需求运用光滑脂进行光滑,否则缸体容易发作损坏的情况。 第四种则是如果是平行式电动缸,那么同步带和齿带间便会发作咬合冲突的杂音,此种问题可通过调理张紧度来降低噪音。

主轴轴承的选型及转台轴承的选型

转台轴承的选型 数控机床中常用的回转工作台有分度工作台和数控回转工作台。数控机床在加工某些零件的时候,除了需要X、Y、Z三个坐标轴的直线进给运动外,有时候还需要有绕X、Y、Z三个坐标轴的圆周运动,分别称为A、B、C轴。数控回转工作台可用来实现圆周进给运动,除此之外,还可以完成分度运动。而分度工作台的功用只是将工件转位换面,和自动换刀装置配合使用,实现工件一次安装能完成几个面的多种工序,因此,大大提高了工作效率。数控转台的外形和分度工作台没有多大差别,但在结构上则具有一系列的特点。由于数控转台能实现进给运动,所以它在结构上和数控机床的进给驱动机构有许多共同之处。不同点是驱动机构实现的是直线进给运动,而数控转台实现的是圆周进给运动。 回转工作台广泛地使用于各种数控铣床、镗床、各种立车以及立铣等机床。除了要求回转工作台能很好地承受工件重量外,还需要保证其在承载下的回转精度。转台轴承,作为转台的核心部件,在转台运行过程中,不仅要具有很高的承载能力,还需具备高回转精度、高抗倾覆能力、以及较高的转速能力等。 2.1推力球轴承+圆柱滚子轴承 推力球轴承能承受一定的轴向力,所以该轴承主要用于承受工件的重量;而圆柱滚子轴承主要用于径向的定位和承受外部的径向力(例如切削力、铣削力等)。该类设计应用广泛,并且成本也相对比较低廉。由于推力球是一种点接触的轴承,所以它的轴向承载力相对比较有限,主要用于小型或中型的机床回转工作台。此外推力球的润滑也比较困难。 2.2静压轴承+精密圆柱滚子轴承 静压轴承是一种靠外部供给压力油,在轴承内建立静压承载油膜以实现润滑的滑动轴承。静压轴承从起动到停止始终在润滑下工作,所以没有磨损,使用寿命长,起动功率小;此外,这种轴承还具有旋转精度高,油膜刚度大,能抑制油膜振荡等优点。精密圆柱滚子轴承具有很好的径向承载力,并且由于采用了精密级的轴承,回转工作台的回转精度也能得到保证。使用该类设计的回转工作台能承受很高的轴向力,有些工件的重量超过200t以上,转台直径超过10m。但是该类设计也有一些不足之处,由于静压轴承必须附带一套专用的供油系统来供给压力油,维护比较复杂,而且成本也比较高。 2.3交叉滚子轴承 交叉滚子轴承在转台上的应用比较普遍。交叉滚子轴承的特征是轴承中有两个滚道,两排交叉排列的滚子。与传统的推力轴承+径向定心轴承组合相比,交叉滚子轴承结构紧凑、体积小巧,并简化了工作台设计,从而降低了转台的成本。由于使用了优化的预紧力,该类轴承具有很高的刚度,因而转台的刚度和精度也都得到了保证。得益于两排交叉滚子的设计,轴承的有效跨距能被显著提高,所以该类轴承具有很高的抗倾覆力矩。在交叉滚子轴承中,又分成两种类型:第一种是圆柱交叉滚子轴承,第二种是圆锥交叉滚子轴承。通常,圆柱交叉滚子轴承价格比圆锥交叉滚子轴承低,适用于转速相对较低的转台应用中;而圆锥交叉滚子轴承采用了圆锥滚子的纯滚动设计,具有运转精度高,转速能力强,减少了轴长度和加工成本等优势。交叉滚子轴承适用于各种类型的立式或卧式镗床,以及立磨、立车和大型齿轮铣床等应用。 主轴轴承的选型 用于机床主轴上的轴承精度应为ISOP5或以上(P5或P4是ISO的精度等级,通常从低到高为(P0、P6、P5、P4、P2),而对于数控机床、加工中心等高速、高精密机床的主轴支承,则需选用ISOP4或以上的精度。主轴轴承包括角接触球轴承、圆锥滚子轴承,以及圆柱滚子轴承等类型。 1.1精密角接触球轴承 精密角接触球轴承的使用广泛,角接触球轴承的滚动体是球,因为它是一种点接触(区别于滚子轴承的线接触),所以能提供更高的转速、更小的发热量和更高的旋转精度。在一些超高速的主轴应用场合,还会采用陶瓷球(一般为si3N4或者是Al203)的混合型轴承。与传统的全淬透钢球相比,陶瓷球材料自身的特点赋予了陶瓷球轴承具有高刚度、高转速、耐高温、寿命长的特点,从而满足高端客户对机床轴承产品的需求。 就角接触球轴承的接触角而言,目前比较流行的是15和25的接触角;通常15的接触角具有比较高的转速性能,而25的接触角具有较高的轴向承载能力。由于预载的选择对于精密角接触球轴承应用的影响非常大,如在高承载、高刚性的场合,一般会选用中型或重型的轴承预载;而针对一些高转速、高精度的应用场合,在轴承的早期选型中,需要注意选择合适的预载。预载一般分成轻型、中型、重型三种,一般轻预载比较常见。为了方便客户的使用,目前世界上的几大轴承制造商都普遍提供预先研磨轴承端面而加预载的轴承,也就是人们通常所说的万能配对精密角接触球轴承形式。该类轴承免去了客户的预载调节,从而节省了安装时间。 1.2精密圆柱滚子轴承 在机床主轴的应用中,双列精密圆柱滚子轴承也会被使用到,通常与精密角接触球轴承或推力轴承组合应用。此类轴承能承受较大的径向载荷并允许有较高的转速。轴承中的两列滚子以交叉方式排列,旋转时波动频率比单列轴承大幅提高,振幅降低60%-70%。此类轴承通常有两种形式:NN30、NN30K两个系列轴承内圈带挡边,外圈可分离;NNU49、NNU49K两个系列轴承外圈带挡边,内圈可分离,其中NN30K和NNU49K系列内圈为锥孔(锥度1:12),与主轴的锥形轴颈配合,轴向移动内圈,可使内圈胀大,这样轴承游隙可以被减小甚至预紧轴承(负游隙状态)。圆柱孔轴承通常采用热装,利用过盈配合减小轴承游隙,或者预紧轴承。对内圈可分离的NNU49系列轴承,一般在内圈装上主轴后再对滚道精加工,以提高主轴旋转精度。 1.3精密圆锥滚子轴承 在一些重载且对速度有一定要求的机床应用场合中,如锻件的荒磨、石油管道的车丝机、重型车床和铣床等,选择精密圆锥滚子轴承是一种比较理想的方案。由于圆锥滚子轴承的滚子是线接触的设计,因此它能为主轴提供很高的刚性和承载;另外,圆锥滚子轴承是一种纯滚动的轴承设计,它能很好地降低轴承运转扭矩和发热,从而确保主轴的转速和精度。由于圆锥滚子轴承能够在安装过程中调节轴向预载(游隙),这能让客户在轴承的整个使用周期中更好地优化轴承游隙调节。

怎样正确选择轴承 辨别轴承质量好坏的方法?

轴承型号一般是由用户的技术人员根据配套产品的使用条件及承受负荷对轴承进行选择。业务人员主要了解用户的实际负荷是否与所选轴承相符合,如果轴承达不到使用要求,应尽快建议客户改选型号,但除非特殊产品在选择型号上一般不会有什么问题。 1.油脂的选择 油脂的选择一般是根据轴承的转速、耐温情况、噪音要求及起动力矩等方面进行选择,要求业务人员对各种油脂的性能很了解。 2.轴承密封型式的选择 轴承的润滑可分为油润滑和脂润滑。油润滑轴承一般是选用形式轴承,脂润滑轴承一般选用防尘盖或橡胶密封件密封。防尘盖适用于高温或使用环境好的部位,密封件分接触。1、轴承型号的选择 轴承型号一般是由用户的技术人员根据配套产品的使用条件及承受负荷对轴承进行选择。业务人员主要了解用户的实际负荷是否与所选轴承相符合,如果轴承达不到使用要求,应尽快建议客户改选型号,但除非特殊产品在选择型号上一般不会有什么问题。 3.轴承游隙的选择 用户在购买轴承时一般只会告知在什么型号、等级,很少会对轴承的游隙提出要求,业务人员必须问清轴承的使用条件、其中轴承的转速、温度、配合公差都直接关系到轴承游隙的选择。一般在3500转/分以下转速的电机大多采用CM游隙,如高温高速电机则要求采用相对较大的游隙。轴承游隙在装配后会因为内孔的涨大及外圆的缩小而导致减少,游隙的减少量=过盈量×60%(轴承室是铝的除外)。比如轴承装配前游隙是0.01mm,装配时过盈量为0.01mm,则轴承装配后的游隙为0.004mm。在理论上轴承在零游隙时噪音和寿命都达到最佳的状态,但在实际运转中考虑到温升等问题,轴承在装配后游隙为0.002mm-0.004mm较好。 辨别轴承质量好坏的方法 下面向大家介绍几种辨别轴承质量的常用方法: 1.外包装是否明晰 一般情况下,正厂品牌都有自己专门的设计人员对外包装进行设计,并且安排生产条件过关的工厂进行制作生产,因此包装无论从线条到色块都非常清晰,毫不含糊。(部分进口轴承品牌的配件包装上还有专门用以保护自己的知识产权的独特设计)。 2.是否有杂响 左手握住轴承体内套,右手拨动外套使其旋转,听其是否有杂响。由于大部分仿冒产品的生产条件落后,完全手工作坊式操作,在生产过程中难免会掺进沙子一类的杂质,藏在轴承体内,所以在旋转的时候会发出杂响。这是和严格执行生产标准并用机器操作的正厂品牌之间最大的不同。 3.倒角是否均匀 所谓轴承的倒角,也就是横面与竖面的交接处,仿冒的轴承由于生产技术的限制,在这些边边角角的部位处理得不尽人意。 4.表面是否有浑浊的油迹 由于国内目前的防锈技术还不是特别到家,所以对轴承体进行防锈处理时很容易留下厚厚的油迹,拿在手上很粘稠,而国外原装进口的轴承上几乎看不到防锈油的痕迹,倒是特别细心的行家说进口轴承闻起来有一种味道,肯定是下了防锈油,只是看不到而已。这在购买进口轴承时应该特别注意。 5.钢印字是否清晰 在轴承体上会印有品牌字样、标号等。字体非常小,但是正厂出品大都使用钢印技术,而且在未经过热处理之前就进行压字,因此字体虽然小,但是凹得深,非常清晰。而仿冒产品的字体比较模糊,由于印字技术粗糙,字体浮于表面,有些甚至轻易地就可以用手抹去。

联轴器的几个分类和特点

鼓形齿式联轴器 鼓形齿式联轴器作为一种传动装置的鼓形齿联轴器,是由普通直齿联轴器发展演变而来的,鼓形齿联轴器在国外许多先进的工业国家已有种种标准及系列产品,由两个鼓形外齿套与一对直齿内齿齿圈等零件组成。 靠内,外齿的啮合传递转矩,并通鼓形外齿套的直齿的内齿圈的轴线摆动(称角向位移)来补偿俩传动轴线的相对偏移。齿长方向的鼓度越大,其角向位移越大,最大达6°,一般使用推荐1°~1.5°,而旧的齿轮联轴器只允许0.5°;从弯曲强度和承载能力来看,在相同的工作条件下鼓形齿联轴器传递扭矩可提高15~20%。 齿长方向的鼓度,使齿对接触情况较好,因此鼓形齿式联轴器有传动能力大、角位移大、传动平稳、效率高、寿命长等优点。因此逐步取代直齿联轴器,并广泛用于冶金机械,重型、矿山机械,起重、运输机械等传动。 大转矩鼓型齿联轴器承载冲击性能好,但齿面接触应力和齿根弯曲疲劳强度要求高,如果我们采取特殊结构、特殊材料、特殊工艺,那么该联轴器就能够满足大直径轧管机的要求。 膜片联轴器 膜片联轴器适用于高温、高速、有腐蚀介质工况环境的轴系传动,如水泵(尤其是大功率、化工泵)、风机、压缩机、液压机械、石油机械、印刷机械、纺织机械、化工机械、矿山机械、冶金机械、航空(直升飞机)、舰艇高速动力传动系统、汽轮机、活塞式动力机械传动系统、履带式车辆,以及发电机组高速、大功率机械传动系统,经动平衡后应用于高速传动轴系已比较普遍。 膜片联轴器与齿式联轴器相比,没有相对滑动,不需要润滑、密封,无噪声,基本不用维修,制造方便,可部分代替齿式联轴器。膜片联轴器在国际上工业发达国家应用已很普通,在我国已制订机械行业标准,已修订为新的行业标准:JB/T 9147-1999(代替ZB/T J19022-90) 联轴器各转矩间的关系。 梅花形弹性联轴器 梅花弹性联轴器主要适用于起动频繁、正反转、中高速、中等扭矩和要求高可靠性的工作场合,例如:冶金、矿山、石油、化工、起重、运输、轻工、纺织、水泵、风机等。工作环境温度 -35℃~+80℃,传递公称扭矩25~12500Nm,许用转速1500~15300r/min。 梅花形弹性联轴器主要由两个带凸齿密切啮合并承受径向挤压以传递扭矩,当两轴线有相对偏移时,弹性元件发生相应的弹性变形,起到自动补偿作用。 滑块联轴器 滑块联轴器与十字滑块联轴器结构相似,不同之处在于中间十字滑块为方形滑块,利用中间滑块在其两侧半联轴器端面的相应径向槽内滑动,以实现两半联轴器联接。 该联轴器噪声大,效率低,磨损快,一般尽量不选用,只有转速很低的场合,本标准所规定的滑块联轴器,适用于油泵装置或其它传递扭矩较小的场合,具有一定补偿两轴相对偏移量,减震和缓冲性能;其工作温度为-20~70°C。传递公称扭矩为16~500N.m。 十字滑块联轴器 十字滑块联轴器零件的材料可用45钢,工作表面需要进行热处理,以提高其硬度;要求较低时也可用Q275钢,不进行热处理。为了减少摩擦及磨损,使用时应从中间盘的油孔中注油进行润滑。 十字滑块联轴器又名金属滑块联轴器,其滑块呈圆环形,用钢或耐磨合金制成,适用于转速较低,传递转矩较大的传动。 十字滑块联轴器由两个在端面上开有凹槽的半联轴器和一个两面带有凸牙的中间盘组成。因凸牙可在凹槽中滑动,故可补偿安装及运转时两轴间的相对位移。因为半联轴器与中间盘组成移动副,不能发生相对转动,故主动轴与从动轴的角速度应相等。

梅花联轴器如何安装使用?

梅花联轴器如何安装使用? 1 、安装前应首先检查原动机和工作机两轴是否同心,两轴表面是否有包装纸和碰伤。 梅花联轴器两个半联轴节内孔是否有杂物,内孔棱边是否有碰伤、如有应将轴、半联轴节清理干净,碰伤用细锉处理好。 然后检查两个半联轴节的内孔直径和长度是否同原动机、工作机的直径和轴伸长度尺寸相符。一般选型时,让原动机和工作机端半联轴节长度小于其轴伸长度10— 30mm为好。 2、 为了便于安装,最好是将两个半联轴节放在120150的保温箱或油槽中进行预热,使内孔尺寸涨大很容易装上。 安装后保证轴头不能凸出半联轴节端面,以齐平为好。检测两半联轴节之间的距离:沿半联轴节的法兰盘两内侧测出34点的读数取平均值,及加长段与两个膜片组实测尺寸之和,两者误差控制在0—04mm范围之内。 3 、找正:用百分表检测两半联轴节法兰盘端面和外圆跳动,当法兰盘外圆小于250mm时跳动值应不大于005mm;当法兰盘外圆大于250mm时,跳动值应不大于008。 4、安装螺栓:把螺栓从法兰盘小孔外侧穿入,从另一件法兰盘大孔外侧穿出套上缓冲套、弹性垫圈、扭上螺母,用扳手将螺母把紧。如安装不适或拆除更换,又不损伤轴及半联,安装完毕后,转动自如无别劲为好。 5、 操作工须知:梅花联轴器在启动设备前应先检查梅花联轴器的螺母是否有松动或脱落,如有要及时将螺母用扳手把紧。应先空载启动设备1分钟后将负载管线阀门打开;停机顺序相反。(请每月将联轴器外部用机油涂刷一遍)。 6、实践证明,如按说明及要求进行安装、维护、操作、梅花联轴器的日启动次数在15次,联轴器的使用寿命最少5年以上,如不按说明书的要求进行安装、维护、操作,特别是螺栓方向装错使联轴器变形或原动机与工作机两轴轴心偏移过大都会使联轴器提前损坏。 梅花联轴器安装过程中注意事项 梅花联轴器的结构简单,零件数少,径向尺寸小,无需润滑;弹性元件受压承载能力较高。除双法兰型梅花形弹性联轴器外,更换易损件梅花形弹性件时,均需轴向移动半联轴器。这种联轴器对两轴相对偏移有一定的补偿力。 梅花弹性联轴器是将一个整体的梅花形弹性环装在两个形状相同的半联轴器的凸爪之间,以实现两半联轴器的连接。通过凸爪与弹性环之间的挤压传递动力,通过弹性环的弹性变形补偿两轴相对偏移,实现减振缓冲。每种形式均有14个规格,它们适用的轴孔直径d=12160mm,轴孔长度L=35135mm,公称转矩T=2525000Nm,许用转速[n]=150015300rmin。 这种联轴器已标准化,GB/T52722002制定的五种结构形式:LM形(基本型)、LMD型(单法兰型)、LMS型(双法兰型)、LMZI型(分体式制动轮型)和LNZII(整全式制动轮型)。 适用范围和性能特点: (1)工作稳定可靠,具有良好的减振、缓冲和电绝缘性能。 (2)结构简单,径向尺寸小,重量轻,转动惯量小,适用于中高速场合。 (3)具有较大的轴向、径向和角向补偿能力。 (4)高强度聚氨酯弹性元件耐磨耐油,承载能力大,使用寿命长,安全可靠。 (5)联轴器无需润滑,维护工作量少,可连续长期运行。 根据其性能及用途可分为: 梅花形弹性联轴器、伺服电机用梅花联轴器、夹紧式梅花联轴器等。具有键槽式、夹紧式、加长式、法兰式等诸多类型可供选择; 梅花形弹性联轴器的特点是: 1.紧凑型、无齿隙,提供三种不同硬度弹性体; 2.可吸收振动,补偿径向和角向偏差; 3.结构简单、方便维修、便于检查; 4.免维护、抗油及电气绝缘、工作温度20℃60℃; 5.梅花弹性体有四瓣、六瓣、八瓣和十瓣; 6.固定方式有顶丝,夹紧,键槽固定。 梅花联轴器的工作原理 是将一个整体的梅花形弹性环装在两个形状相同的半联轴器的凸爪之间,以实现两半联轴器的连接。本联轴器广泛使用于水泵、油泵、机床等行业。通过凸爪与弹性环之间的挤压传递动力,通过弹性环的弹性变形补偿两轴相对偏移,实现减振缓冲。 梅花弹性联轴器,顾名思义,因其弹性体梅花形状而得此名,根据弹性体材质不同可分为:橡胶形梅花联轴、聚氨酯梅花联轴器;通常采纳的弹性体为聚氨酯。

电机用轴承的型号有哪些?

电机常用轴承型号 Y2系列电机轴承 轴伸端:6201-2E-C3、6202-2E-C3、6204-2E-C3、6205-2E-C3、6206-2E-C3、6308-2E-C3、6311-C3、6312-C3、6313-C3、6314-C3、6317-C3、6319-C3、NU319、NU322 风扇端:6201-2E-C3、6202-2E-C3、6204-2E-C3、6205-2E-C3、6206-2E-C3、6308-2E-C3、6309-2E-C3、6311-C3、6312-C3、6313-C3、6314-C3、6317-C3、6319-C3、6322-C3 YSJ系列压缩机专用电机轴承 轴伸端:6204-2E-C3、6205-2E-C3、6206-2E-C3、6308-2E-C3、6309-2E-C3、6311-C3、6312-C3、6313-C3、6314-C3、6317-C3、6319、6319-C3、6322 风扇端:6204-2E-C3、6205-2E-C3、6206-2E-C3、6308-2E-C3、6309-2E-C3、6311-C3、6312-C3、6313-C3、6314-C3、6317-C3、6319-C3、6322-C3 电机轴承也叫电动机轴承或者马达轴承,是专门应用于电动机或者马达上的一种专用轴承产品。电机使用的轴承是一个支撑轴的零件,它可以引导轴的旋转,也可以承受轴上空转的部件,概念很宽泛。电机常用的轴承有四种类型,即滚动轴承、滑动轴承、关节轴承和含油轴承。最常见的电机轴承是滚动轴承,即有滚动体的轴承。滑动轴承泛指没有滚动体的轴承,即作滑行运动的轴承。 电机轴承代号构成: 1.前置代号—表示轴承的分部件。 2.基本代号—表示轴承的类型与尺寸等主要特征。 3.后理代号—表示轴承的精度与材料的特征。 电动机用轴承还有很多,常见搭配组合的有深沟球轴承与圆柱滚子轴承组合、角接触球轴承与圆柱滚子轴承的组合等。

弹性联轴器的选型计算

1.什么是联轴器 用于连接驱动装置与被驱动装置,以达到将驱动装置的转动传递到被驱动装置的产品。 驱动装置一般是:电动机、柴油机、蒸汽机等,或是齿轮箱。 被驱动装置就非常多了,常见的有 丝杠、 水泵、空压机、鼓风机、轮毂、齿轮箱等。 为什么需要用性联轴器 安装驱动装置与被驱动装置时不能保证两根轴完全对中。 即使安装时精度很高,但随着设备运行时间久了,不能避免设备基座沉降或偏移,从而在两轴间出现偏差。 轴间偏差一般体现在3个方向:角向、轴向、径向。同时,驱动装置的非均衡输出的扭力(即扭力振动)也被考虑为轴间偏差的一种。 两轴的不对中会造成设备运转时震动加剧、噪声增大、加剧轴上轴承的磨损甚至损坏油封。同时,由于两轴的不对中而产生的应力也会增加轴的负荷,长此以往将严重影响轴及设备的寿命。 为避免以上情况出现,保护后继设备,需要在两轴间设立一种挠性连接,来容忍和适当补偿这种偏差——这就是挠性联轴器。 挠性联轴器通过其中弹性部件的变形来承受偏差产生的额外应力,同时有效传输动力。 根据不同方向的偏差、传递不同的动力、运用于不同的场合等要求,Banna设计了多种不同结构形式的联轴器。 联轴器的分类:刚性联轴器 挠性联轴器 还分别有非金属挠性联轴器与金属联轴器刚性联轴器即将两根设备轴以刚性的方式来连接,仅起到传递动力的作用,没有任何补偿轴间偏差的作用。因此刚性联轴器具有较高的传动精度(能同步传动),但不具备保护后继设备的功能。典型产品:套筒式联轴器 挠性联轴器不仅能够传递动力,其中的挠性部件还能够有效容忍和补偿轴间的偏差,部分挠性联轴器还能有效缓解设备震动。因此虽然部分联轴器不能完全同步传动,但挠性联轴器的最大好处在于能够保护后继设备,延长设备的使用寿命。 非金属弹性联轴器: 优点: 扭力柔软,能承受的偏移量比全金属产品更大; 良好的缓解震动、吸收冲击的能力; 无须日常润滑和维护; 有多种形式和材质的弹性体可供选择以满足不同的需要 对轴上轴承的反作用力较小; 相对全金属产品,同样的开孔要求情况下,非金属产品价格更低 全金属弹性联轴器: 优点: 扭力硬,传动精度高; 耐高温,耐化学侵蚀; 在高扭矩的要求下,全金属产品体积更小,所需安装空间更小; 能承受更高转速的运转,能适应更大的轴径范围; 可制成全不锈钢产品; 许多产品都能够满足零回转要求。 非金属弹性联轴器: 局限: 不能应用于高温或有一定耐化学侵蚀要求的场合; 由于扭力软,往往无法精确传动。除QS产品外,都不能满足零回转要求; 同样的扭矩要求下,体积较大,所需空间更多; 部分形式的产品没有很好的超扭矩负荷能力。 全金属弹性联轴器: 局限: 疲劳和磨损是导致产品失效的主要原因; 部分产品需要日常润滑维护; 往往有多个部件组成,组装繁琐;同时大部分产品需要非常仔细的组装; 往往没有很好的缓震或吸收冲击的能力; 全金属产品无法应用于有绝缘要求的场合。 如何选择合适的联轴器 没有万能的联轴器——任何一种形式的联轴器都有其独到之处,也有其不能完成的任务。 选择合适的联轴器就必须了解使用联轴器的环境和目的。 使用联轴器的环境 驱动装置的情况——驱动装置的名称、驱动功率(Kw)、驱动转速(转/分)、驱动端输出形式(轴、法兰、飞轮等)和尺寸。 被驱动装置的情况——被驱动装置的名称、被驱动端输入形式(轴、法兰、飞轮等)和尺寸。 两装置之间的情况——两者之间的空间有无要求或限制、两者的位置情况(垂直或水平)。 周围环境情况——环境温度、有无化学侵蚀、露天或室内以及其他需要特别关注的情况使用联轴器的目的传递扭力方面:是否需要额外的安全系数;…

Read More

梅花联轴器的安装知识

安装梅花联轴器需要注意哪些方面? 1. 安装前应首先检查原动机和工作机两轴是否同心,两轴表面是否有包装纸和碰伤,梅花联轴器两个半联轴节内孔是否有杂物,内孔棱边是否有碰伤、如有应将轴、半联轴节清理干净,碰伤用细锉处理好。 然后检查两个半联轴节的内孔直径和长度是否同原动机、工作机的直径和轴伸长度尺寸相符。一般选型时,让原动机和工作机端半联轴节长度小于其轴伸长度10- 30mm为好。 2. 为了便于安装,最好是将两个半联轴节放在120–150的保温箱或油槽中进行预热,使内孔尺寸涨大很容易装上。安装后保证轴头不能凸出半联轴节端面,以齐平为好。检测两半联轴节之间的距离:沿半联轴节的法兰盘两内侧测出3–4点的读数取平均值,及加长段与两个膜片组实测尺寸之和,两者误差控制在0-0.4mm范围之内。 3. 找正:用百分表检测两半联轴节法兰盘端面和外圆跳动,当法兰盘外圆小于250mm时跳动值应不大于0.05mm;当法兰盘外圆大于250mm时,跳动值应不大于0.08。 4.安装螺栓:把螺栓从法兰盘小孔外侧穿入,从另一件法兰盘大孔外侧穿出套上缓冲套、弹性垫圈、扭上螺母,用扳手将螺母把紧。如安装不适或拆除更换,又不损伤轴及半联,安装完毕后,转动自如无别劲为好。 5. 操作工须知:梅花联轴器在启动设备前应先检查梅花联轴器的螺母是否有松动或脱落,如有要及时将螺母用扳手把紧。 梅花联轴器的使用越来越广泛

过滤器的选型与应用,快来看一看

过滤器是除去液体中少量固体颗粒的小型设备,可保护设备的正常工作。 一. 过滤器选型的原则要求 过滤器是除去液体中少量固体颗粒的小型设备,可保护设备的正常工作,当流体进入置有一定规格滤网的滤筒后,其杂质被阻挡,而清洁的滤液则由过滤器出口排出,当需要清洗时,只要将可拆卸的滤筒取出,处理后重新装入即可。 1.过滤器进出口通径: 原则上过滤器的进出口通径不应小于相配套的泵的进口通径,一般与进口管路口径一致。 2.公称压力选型: 按照过滤管路可能出现的最高压力确定过滤器的压力等级。 3.孔目数的选择: 过滤器孔目数的选择主要考虑需拦截的杂质粒径,依据介质流程工艺要求而定。各种规格丝网可拦截的粒径尺寸查下表“滤网规格”。 4.过滤器材质: 过滤器的材质一般选择与所连接的工艺管道材质相同,对于不同的服役条件可考虑选择铸铁、碳钢、低合金钢或不锈钢材质的过滤器。 5.过滤器阻力损失计算 水用过滤器,在一般计算额定流速下,压力损失为0.52~1.2kpa。 二.过滤器应用 1.不锈钢过滤器 不锈钢过滤器广泛用于蒸汽、空气、水、油品,等多种介质的管线中;保护管线系统各种设备、水泵、阀门等;免受管道内铁锈、焊碴等杂质,带来的堵塞和损坏。不锈钢过滤器抗污性强,排污方便,流通面积大,压力损失小,结构简单,体积小,重量轻。过滤网材质均为不锈钢,耐腐蚀性强,使用寿命长。 2.Y型过滤器 Y型过滤器输送介质的管道系统不可缺少的一种过滤装置,Y型过滤器通常安装在减压阀、泄压阀、定水位阀或其它设备的进口端,用来清除介质中的杂质,以保护阀门及设备的正常使用。Y型过滤器具有结构先进,阻力小,排污方便等特点。 3.Y型拉杆伸缩过滤器 Y型拉杆伸缩过滤器采用新型的设计,把Y型过滤器与伸缩接头组合,结构简单,使用方便,解决了各种不同标准产品的法兰间长度不同而造成固定管道上安装不便的缺陷,拉杆伸缩过滤器主要用于高层建设、多层建筑或工厂内给排水配管,通常安装于减压阀、泄压阀、定水位阀或其它主要设备的进口端,安装了拉杆伸缩过滤器后便于削除管道杂物或安装拆卸以保证阀类或设备之正常使用。 4.篮式过滤器 篮式过滤器除去液体中含有少量固形物的小型设备,可保护压缩机、泵和其它设备及仪表等正常工作;也是提高产品纯度、净化气体的小型设备。因此,篮式过滤器广泛应用于石油、化工、化纤、医药、食品等工业。篮式过滤器有壳体、排污盖、滤芯、滤网、螺栓等组成。 5.T型过滤器 T型过滤器广泛应用于蒸汽、空气、水、油品等多种介质的管线中,保护管线系统上各种设备,如水泵、阀门等,免受管道内的铁锈、焊渣等杂物带来对管道的堵塞和损坏。上海日美阀门制造有限公司生产的T型过滤器具有抗污性能强,排污方便,流通面积大,压力损失小,结构简单,体积小等特点;T型过滤器的过滤网材质均是不锈钢,耐腐蚀性强,使用寿命长;T型过滤器还分直流式和折流式,过滤网的密度有10目-120目,温度0~450℃.

工业机械手的组成及机能有哪些?

工业机械手系统组成 工业机械手主要由执行机构、驱动机构、和控制系统三大部分组成。 (1)执行机构 机械手的执行机构可以分为手部、手臂和躯干等三部分。手部一般安装在手臂的前端其构造是模仿人的手指。手臂可以分为无关节臂和有关节臂,其主要作用是引导手指准确地抓住工件,并运送到所需要的位置上。躯干是安装手臂、动力源和执行机构的支架。 (2)驱动机构 机械手的驱动机构主要有四种:液压驱动、气压驱动、电气驱动和机械驱动。其中以液压、气动用的最多,电动和机械用的较少。 (3)控制系统 机械手控制的要素包括工作顺序、到达位置、动作时间、运动时间、运动速度和加减速度等。机械手的控制可以分为点位控制、连续轨迹控制、力控制和智能控制方式等。 工业机械手的机能 机械手的机能就是指它具有完成人们预定作业所需要的能力。运动机能是指机械手完成预定工艺操作应具有的运动自由度,以及所能到达的活动范围。同时还要求机械手具有对机械手的抓放、定向、工艺操作和行走的能力等。通用机械手应根据作业的要求,设计成具有完善的运动机能,即它的动作要接近于人手操作时的某些运动机能,以适应广大作业范围的需要。专用机械手则仅赋予部分的运动机能,可按照工艺操作的需要来确定。机械手又应具有一定的物理机能如载荷能力、运动速度、持续工作能力以及工作的准确性和稳定性等性能。此还应具有耐热、耐腐蚀的能力,以适应工艺操作的需要和具体的工作环境。机械手的另一个要机能就是控制机能。对专用机械手而言,是指能自动完成作业程序的能力。但对于一般的通用机械手其控制性能是指它具有自动地、或被动地变换程序的能力,即按照指令能自动地、再现地完成规定的动作程序的机能。 工业机械手作用 机械工业中,应用机械手的意义: ⑴可提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 ⑵可改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。 ⑶可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。

直线导轨的性能特点

1.适应高速运动且大幅降低驱动功率。采用滚动直线导轨的机床由于摩擦阻力小,可使所需的动力源及动力传递机构小型化,使驱动扭矩大大减少,使机床所需电力降低80%,节能效果明显。可实现机床的高速运动,提高机床的工作效率20~30%。 2.承载能力强。滚动直线导轨副具有较好的承载性能,可以承受不同方向的力和力矩载荷,如承受上下左右方向的力,以及颠簸力矩、摇动力矩和摆动力矩。因此,具有很好的载荷适应性。在设计制造中加以适当的预加载荷可以增加阻尼,以提高抗振性,同时可以消除高频振动现象。 而滑动导轨在平行接触面方向可承受的侧向负荷较小,易造成机床运行精度不良。 3.组装容易并具互换性。传统的滑动导轨必须对导轨面进行刮研,既费事又费时,且一旦机床精度不良,必须再刮研一次。滚动导轨具有互换性,只要更换滑块或导轨或整个滚动导轨副,机床即可重新获得高精度。 4.定位精度高。滚动直线导轨的运动借助钢球滚动实现,导轨副摩擦阻力小,动静摩擦阻力差值小,低速时不易产生爬行。重复定位精度高,适合作频繁启动或换向的运动部件。可将机床定位精度设定到超微米级。同时根据需要,适当增加预载荷,确保钢球不发生滑动,实现平稳运动,减小了运动的冲击和振动。 5.磨损小。对于滑动导轨面的流体润滑,由于油膜的浮动,产生的运动精度误差是无法避免的。在绝大多数情况下,流体润滑只限于边界区域,由金属接触而产生的直接摩擦是无法避免的,在这种摩擦中,大量的能量以摩擦损耗被浪费掉了。与之相反,滚动接触由于摩擦耗能小,滚动面的摩擦损耗也相应减少,故能使滚动直线导轨系统长期处于高精度状态。同时,由于使用润滑油也很少,这使得在机床的润滑系统设计及使用维护方面都变的非常容易。

机器人的原理详解

机器人的定义范围很广,大到工厂服务的工业机器人,小到居家打扫机器人。按照目前最宽泛的定义,如果某样东西被许多人认为是机器人,那么它就是机器人。许多机器人专家(制造机器人的人)使用的是一种更为精确的定义。他们规定,机器人应具有可重新编程的大脑(一台计算机),用来移动身体。 根据这一定义,机器人与其他可移动的机器(如汽车)的不同之处在于它们的计算机要素。许多新型汽车都有一台车载计算机,但只是用它来做微小的调整。驾驶员通过各种机械装置直接控制车辆的大多数部件。而机器人在物理特性方面与普通的计算机不同,它们各自连接着一个身体,而普通的计算机则不然。 大多数机器人确实拥有一些共同的特性 首先,几乎所有机器人都有一个可以移动的身体。有些拥有的只是机动化的轮子,而有些则拥有大量可移动的部件,这些部件一般是由金属或塑料制成的。与人体骨骼类似,这些独立的部件是用关节连接起来的。 机器人的轮与轴是用某种传动装置连接起来的。有些机器人使用马达和螺线管作为传动装置;另一些则使用液压系统;还有一些使用气动系统(由压缩气体驱动的系统)。机器人可以使用上述任何类型的传动装置。 其次,机器人需要一个能量源来驱动这些传动装置。大多数机器人会使用电池或墙上的电源插座来供电。此外,液压机器人还需要一个泵来为液体加压,而气动机器人则需要气体压缩机或压缩气罐。 所有传动装置都通过导线与一块电路相连。该电路直接为电动马达和螺线圈供电,并操纵电子阀门来启动液压系统。阀门可以控制承压流体在机器内流动的路径。比如说,如果机器人要移动一只由液压驱动的腿,它的控制器会打开一只阀门,这只阀门由液压泵通向腿上的活塞筒。承压流体将推动活塞,使腿部向前旋转。通常,机器人使用可提供双向推力的活塞,以使部件能向两个方向活动。 机器人的计算机可以控制与电路相连的所有部件。为了使机器人动起来,计算机会打开所有需要的马达和阀门。大多数机器人是可重新编程的。如果要改变某部机器人的行为,您只需将一个新的程序写入它的计算机即可。 英语里“机器人”(Robot)这个术语来自于捷克语单词robota,通常译作“强制劳动者”。用它来描述大多数机器人是十分贴切的。世界上的机器人大多用来从事繁重的重复性制造工作。它们负责那些对人类来说非常困难、危险或枯燥的任务。 最常见的制造类机器人是机器臂。一部典型的机器臂由七个金属部件构成,它们是用六个关节接起来的。计算机将旋转与每个关节分别相连的步进式马达,以便控制机器人(某些大型机器臂使用液压或气动系统)。与普通马达不同,步进式马达会以增量方式精确移动。这使计算机可以精确地移动机器臂,使机器臂不断重复完全相同的动作。机器人利用运动传感器来确保自己完全按正确的量移动。 这种带有六个关节的工业机器人与人类的手臂极为相似,它具有相当于肩膀、肘部和腕部的部位。它的“肩膀”通常安装在一个固定的基座结构(而不是移动的身体)上。这种类型的机器人有六个自由度,也就是说,它能向六个不同的方向转动。与之相比,人的手臂有七个自由度。 大多数工业机器人在汽车装配线上工作,负责组装汽车。在进行大量的此类工作时,机器人的效率比人类高得多,因为它们非常精确。无论它们已经工作了多少小时,它们仍能在相同的位置钻孔,用相同的力度拧螺钉。制造类机器人在计算机产业中也发挥着十分重要的作用。它们无比精确的巧手可以将一块极小的微型芯片组装起来。 机器臂的制造和编程难度相对较低,因为它们只在一个有限的区域内工作。如果您要把机器人送到广阔的外部世界,事情就变得有些复杂了。 首要的难题是为机器人提供一个可行的运动系统。如果机器人只需要在平地上移动,轮子或轨道往往是最好的选择。如果轮子和轨道足够宽,它们还适用于较为崎岖的地形。但是机器人的设计者往往希望使用腿状结构,因为它们的适应性更强。制造有腿的机器人还有助于使研究人员了解自然运动学的知识,这在生物研究领域是有益的实践。 机器人的腿通常是在液压或气动活塞的驱动下前后移动的。各个活塞连接在不同的腿部部件上,就像不同骨骼上附着的肌肉。若要使所有这些活塞都能以正确的方式协同工作,这无疑是一个难题。在婴儿阶段,人的大脑必须弄清哪些肌肉需要同时收缩才能使得在直立行走时不致摔倒。同理,机器人的设计师必须弄清与行走有关的正确活塞运动组合,并将这一信息编入机器人的计算机中。许多移动型机器人都有一个内置平衡系统(如一组陀螺仪),该系统会告诉计算机何时需要校正机器人的动作。 自动机器人可以自主行动,无需依赖于任何控制人员。其基本原理是对机器人进行编程,使之能以某种方式对外界刺激做出反应。极其简单的碰撞反应机器人可以很好地诠释这一原理。 这种机器人有一个用来检查障碍物的碰撞传感器。当您启动机器人后,它大体上是沿一条直线曲折行进的。当它碰到障碍物时,冲击力会作用在它的碰撞传感器上。每次发生碰撞时,机器人的程序会指示它后退,再向右转,然后继续前进。按照这种方法,机器人只要遇到障碍物就会改变它的方向。 高级机器人会以更精巧的方式运用这一原理。机器人专家们将开发新的程序和传感系统,以便制造出智能程度更高、感知能力更强的机器人。如今的机器人可以在各种环境中大展身手。 较为简单的移动型机器人使用红外或超声波传感器来感知障碍物。这些传感器的工作方式类似于动物的回声定位系统:机器人发出一个声音信号(或一束红外光线),并检测信号的反射情况。机器人会根据信号反射所用的时间计算出它与障碍物之间的距离。 迄今为止的大多数机器人更像是厨房用具。机器人专家们将它们制造出来以专门用于特定用途。但是它们对完全不同的应用场景的适应能力并不是很好。 这种情况正在改变。一家名叫Evolution Robotics的公司开创了适应型机器人软硬件领域的先河。该公司希望凭借一款易用的“机器人开发人员工具包”开拓出自己的利基市场。 这个工具包有一个开放式软件平台,专门提供各种常用的机器人功能。例如,机器人学家可以很容易地将跟踪目标、听从语音指令和绕过障碍物的能力赋予它们的作品。从技术角度来看,这些功能并不具有革命性的意义,但不同寻常的是,它们集成在一个简单的软件包中。 这个工具包还附带了一些常见的机器人硬件,它们可以很容易地与软件相结合。标准工具包提供了一些红外传感器、马达、一部麦克风和一台摄像机。机器人专家可以利用一套加强型安装组件将所有这些部件组装起来,这套组件包括一些铝制身体部件和结实耐用的轮子。 人工智能(AI)无疑是机器人学中最令人兴奋的领域,无疑也是最有争议的:所有人都认为,机器人可以在装配线上工作,但对于它是否可以具有智能则存在分歧。 就像“机器人”这个术语本身一样,您同样很难对“人工智能”进行定义。终极的人工智能是对人类思维过程的再现,即一部具有人类智能的人造机器。人工智能包括学习任何知识的能力、推理能力、语言能力和形成自己的观点的能力。 人工智能的真正难题在于理解自然智能的工作原理。开发人工智能与制造人造心脏不同,科学家手中并没有一个简单而具体的模型可供参考。我们知道,大脑中含有上百亿个神经元,我们的思考和学习是通过在不同的神经元之间建立电子连接来完成的。但是我们并不知道这些连接如何实现高级的推理能力,甚至对低层次操作的实现原理也并不知情。大脑神经网络似乎复杂得不可理解。 因此,人工智能在很大程度上还只是理论。科学家们针对人类学习和思考的原理提出假说,然后利用机器人来实验他们的想法。 无论如何,机器人都会在我们未来的日常生活中扮演重要的角色。

直线导轨的六不要

1.请注意防止衣物、切屑等异物的进入。否则,可能导致钢球循环部件的破损、功能损坏。 2.要在冷却剂可能进入LM滑块内部的环境下使用LM系统时,由于某些种类的冷却剂会影响产品性能, 3.请避免在超过80℃的条件下使用。要超过80℃使用时, 4.垃圾、锯粉等异物附着时,请在清洗后重新封入润滑剂。有关可用清洁剂的种类, 5.要在逆向吊装状态下使用LM滚动导轨时,请采取对应措施,如添加防止落下的安全机构等。否则,可能引起导致端板破损,使钢球脱落,LM滑块从LM轨道上脱落掉下等事故。   6.要在经常产生振动的场所、无尘室、真空、低温或高温等特殊环境下使用时。

工业机械手日常注意事项有哪些?

随着中国电力工业、数据通信业、城市轨道交通业、汽车业以及造船等行业规模的不断扩大,对工业机械手的需求正在迅速增长,工业机械手将会被越来越广泛的应用。工业机械手属于精密的零件,因而在使用时要求有相当地慎重态度,即便是使用了高性能的工业工业机械手,如果使用不当,也不能达到预期的性能效果,而且容易使工业机械手损坏。所以下面是使用工业机械手时应注意以下事项: 1.防止锈蚀:每日检查机械手各运动部件的润滑,尤其是变径滑板,导杆和变径丝杠,必须每日润滑。(HUTEC温馨提示您:在雨季和夏季时要做好防锈工作) 2.保持工业机械手设备的清洁:保持工业机械手及其周围环境的清洁,即时是肉眼看不见的微小灰尘进入导轨,也会增加导轨的磨损,振动和噪声,因此必须保持环境清洁。 3.每日检查电极工作面的磨损情况,如发现焊接电极沟 槽过深或粘附严重,应立即修复或更换。 4.根据焊接机械手设备的运转情况和使用情况如工作量,使用时间的长短而确定的定期维护和保养。 5.安装应注意:工业机械手在使用安装时要认真仔细,不允许强力冲压,不允许用锤子敲击导轨,否则会引起工业机械手内部或其表面损坏,影响其精度。 6.安装工具要适合:工业机械手使用适合、精确的安装工具,尽量使用专用工具。避免使用布类和短纤维之类的东西,防止细小碎屑静茹工业机械手而影响工业机械手的性能。 工业机械手又称 直轨,滑轨,线性滑轨,它拥有比直线轴承更高的额定负载。同时也有一定的扭矩,可在高可在高负载的情况下实现高精度的直线运动。其作用是用来支撑和引导运动部件,按给定的方向做往复直线运动。 工业机械手分为滑动摩擦导轨、滚动摩擦导轨、弹性摩擦导轨、流体摩擦导轨等种类。经实践证明工业机械手主要是用在精度要求比较高的机械结构上,工业机械手的移动元件和固定元件之间不用中间介质,而用滚动钢球。

滚珠丝杆的选型方法

丝杠的选型范例 1.设定螺距(L) 根据马达的最大转速与快速进给速度     2.计算基本动额定负载 范例所需基本动额定负载与容许转速(DmN值)的各动作模式下的轴向负载的计算                                             A.加速时                                             轴向负载(Pa)=Wα+μWg≈343(N)    …

Read More

导轨出故障解决方法

目前针对机床导轨的划伤、拉伤问题可以采用高分子复合材料解决,其中应用成熟的有美嘉华技术体系。由于材料具有出色的粘着力、抗压强度及耐油、耐磨性能,可为部件提供一个长久的保护层。 工业用导轨大都由钢或铸铁制成,在长期的使用过程中,由于两个接触面间存在不同程度的摩擦,会造成导轨表面产生不同程度的划伤及拉伤,严重影响设备的加工精度和生产效率。传统修复方法通常采用金属板镶贴或更换等方法,但需要进行大量精确的加工制造和人工刮研,修复需要的工序多,工期长。

滑台模组步进电机烧坏的原因

步进电机往往也用于滑台模组中,提升其各方面的性能。步进电机被烧坏了就会影响模组无法正常运行。 1.结构与特长:是能将安装有LM直线导轨和铝合金基座,与气缸驱动组合的单轴智能组合单元。以输送作为其主要的用途。 2.组件标准化:实现气动设备的模块组件标准化。在搬运、传动、输送等作业中,水平方向和垂直方向均可使用。电动滑台可替换气缸而且价格低、寿命长、维护保养容易。 3.耐腐蚀性:基座和滑座可选择铝合金其表面经过高耐腐蚀和耐磨性铝合金防蚀钝化处理(本色阳极氧化处理)此外选用不锈钢直线导轨、安装螺钉也全部使用特殊处理的电镀镍材质,因此具备充分的耐腐蚀性。 4.轻量化高刚性:使用挤制铝合金型材制造的基座与直线导轨相结合因而实现了轻量化和高刚性。高刚性、高精度、价格低、体积小、重量轻、铝合金结构、模组化设计、滑动台和底座经过阳极处后装入直线导轨,基座与滑动台搭配,实现了高刚性和负载容量。对负载负荷的变位量小,用于搭载的质量或外部负载变动的用途也能依然保持高稳定性。 电机烧坏的原因主要有如下六个: 1.电机受潮:因为进水或受潮造成的绝缘降低,也是常见的损坏原因,要做好日常的防护。注意和定期测验绝缘。尤其是用变频器驱动的电机,更要小心此项,不然可能连变频器一块损坏。 2.电机内部原因:因轴承损坏,造成端盖磨损、主轴磨损、转子扫膛、造成线包损伤烧毁也是个主要原因。 3.其它原因:如电压过低或过高,震动造成接线柱松脱相间短路,虫鼠危害、电机额定电压与实际电压不配合。各种减压起动回路故障造成不转换,步进电机长时间低压工作等等。 4.过载:如果是保护功能正常(加装合适的热继电器),一般不会发生。但是,要注意的是,因热继电器无法校验,并且保护数值也不十分精确,选型不合适等等加上 人为设置成自动复位,所以需要保护的时候,往往起不到作用,也可能多次保护以后,没有找到真正原因,人为调高保护数值。至使保护失效。 5.缺相运行:如果此时滑台模组电机的噪声很大,并且严重发热,这也是三相异步电机的致命,一般运行十几分钟就烧坏了。若是整个供电系统缺相,很有可能造成多台电机损坏。山社电机工程师建议对于单台电机最好的解决办法是加装电子的缺相保护器(重要电机一定要用这个)。还有就是三相回路中的保险若是某一相熔断也是个造成缺相的原因。

直角坐标机器人的主要特点和选型

直角坐标机器人主要由一些直线运动单元,驱动电机,控制系统和末端操纵器组成。针对不同的应用,可以方便快速组合成不同维数,不同行程和不同带载能力的壁挂式、悬臂式、龙门式或倒挂式等各种形式的直角坐标机器人。从简单的二维机器人到复杂的五维机器人就有上百种结构形式的成功应用案例。从食品生产到汽车装配等各行各业的自动化生产线中,都有各式各样的多台直角坐标机器人和其它设备严格同步协调工作。 可以说直角坐标机器人几乎能胜任几乎所有的产业自动化任务。下面是其主要特点: 1.任意组合成各种结构样式,带载能力和尺寸的机器人。 2.采用多根直线运动单元级连和齿轮齿条传动,可以形成几十米的超大行程机器人。 3.采用多根直线运动单元平连或带多滑块结构时其负载能力可增加到数吨。 4.其最大运行速度可达到每秒8米,加速度可达到每秒4米。 5.重复定位精度可达到0.05mm~0.01mm。 6.采用带有RTCP功能的五轴或五轴以上数控系统能完成非常复杂轨迹的工作。 直角坐标机器人的选型 1.机器人结构形式选择 根据前面“使用要求分析”中获得的信息资料来选择机器人的结构形式。原则上尽可能选择龙门式直角坐标机器人,但有时受工作空间限制必须选择悬臂式。在食品搬运和玻璃切割等项目中会产生大量粉末,伤害运动轴里面的导轨,此时最好采用悬挂式机器人。有时根据负载及运动间隔和空间限制必须选用挂臂式。根据机器人的工作任务来确定负载的运动位置精度要求,要考虑减速时晃动产生的位置误差。根据机器人的工作任务及其工作空间上的限制来确定运动轴数目及各自运动行程。 2.规划运动轨迹及计算运动速度 根据机器人的工作任务和空间限制来规划运动轨迹。尽可能减少运动间隔,对工作周期要求严的应用要尽可能运用多轴同时运动来减少运动时间和降低运动速度。抓取负载后运动速度要低,空载返回原始点时要快。负载大时加速度和减速度要小,尽可能避免产生巨大的冲击力。根据上面的原则给出各段运动的速度,加速度和减速度。各个运动段间尽可能平稳变速以保证工作周期,减少冲击力和运行噪音。在运动速度分配时要充分考虑各个运动过程与其它设备间的同步协调时间,而且规划的运动时间要比用户要求的时间短些。 3.受力分析 根据速度分析得出各个轴的最大加速度和减速度。然后再计算出多轴同时运动时产生的合成最大减速度。选择独立运动的减速度和同时运动时合成减速度二者中大的减速度,根据这个最大的减速度计算出XYZ三个方向的最大冲击力Fx,Fy和Fz及产生的最大扭曲力矩Mx,My和Mz。在计算不同轴扭曲力矩Mx,My和Mz时要考虑等效负载的重心位置,总重力和减速时产生的冲击力。 4.变形分析 绕度形变仅在大跨度悬空方式下,而且受力很大的情况下才发生。其绕度形变量的计算方法见下面的公式。 f=(F×L3)/(E×I×192) f:挠度形变(mm)f≤1mm F:负载压力(N) L:导轨长度(mm) E:弹性模量(70,000N/mm2) I:面积平方(mm4) 在很多任务中可以答应在运动中有一定量的变形,但在玻璃切割机等数控设备类的应用中是不答应产生变形的。 1.使用要求分析 对于选型的职员首先要有物理运动学基础,材料力学基础,伺服驱动使用和数控系统的应用经验,但最主要是把题目和要求等介绍很清楚。对于简单任务和有经验的工程师通过电话和邮件就可以沟通好,而对复杂的任务要到现场双方共同分析和制定任务描述,给出具体公道的要求。 下面是主要的数据和信息: 机器人的工作任务, 手抓和负载的总重量, 一个完整的工作周期是多少秒,可能分解成的子运动及对应的时间, 运动和取抓过程中与其它设备的同步/握手要求, 各个运动轴的有效运动长度及答应的最大运行速度, 机器人工作四周空间上的限制, 使用环境有粉末,高温,湿度等特殊防护要求。 2.选择驱动电机 根据直线定位单元驱动轴的最高转速来选择驱动电机。当驱动轴的最高转速低于600转/分时通常选用步进电机,否则要选用交流伺服电机。但交流伺服电机的最高转速不要超过3000转/分,否则影响其寿命。 当选用步进电机做驱动轴时,其负载的转动惯量与步进电机的转动惯量比要小于12,当选用伺服电机做驱动轴时,其负载的转动惯量与伺服电机的转动惯量比要小于8,否则影响其高动态特性。但转动惯量比大于上面的数值时,要加减速机。在不超过驱动电机最高转速限制情况下,要尽量选择大减速比的减速机。为了保证高的动态特性,保证在约定的时间内完成任务,驱动电机的最大出力要比理论计算值至少高出85%。通常所选择的驱动电机的最大出力要比理论计算值至少高出100%,而转动惯量比要小于5。 3.确定机器人的结构及各个运动轴 根据上面6个方面的信息和数据就可以终极选定机器人的结构形式及每个运动轴的具体型号和长度等,通常我们能从图片库中找出同样结构的照片,这里的照片是指CAD图或以往用户机器人的照片。还要设计好各个轴间的连接板,不仅要考虑机械方面的装配配合精度,材料的物理强度,连接螺丝杆的拉力等,更要考虑在主要受冲击方向加大加强连接板,必要时增加连接板。主要螺丝杆和螺丝帽要加胶,以防长期振动后变松动。 机器人在加速和减速时会产生强大的冲击力,而且通常天天要工作24小时,所以机器人必须被牢固地安装在支架上。机器人的支架要有足够的抗冲击力,要有地脚,以保证在长期高速高动态运动冲击下,没有任何晃动。此外在安装时要保证运动轴间的平行度、平面度和垂直度。 4.选择末端操纵器——手爪系统 根据其具体应用情况,其手爪系统可能是气动吸盘,气动夹取手爪,电动夹取手爪,电磁吸取手爪,焊枪,胶枪,专用工具和检测仪器等。在很多场合可以一次抓取多个工件。