工业机械手日常注意事项有哪些?

随着中国电力工业、数据通信业、城市轨道交通业、汽车业以及造船等行业规模的不断扩大,对工业机械手的需求正在迅速增长,工业机械手将会被越来越广泛的应用。工业机械手属于精密的零件,因而在使用时要求有相当地慎重态度,即便是使用了高性能的工业工业机械手,如果使用不当,也不能达到预期的性能效果,而且容易使工业机械手损坏。所以下面是使用工业机械手时应注意以下事项: 1.防止锈蚀:每日检查机械手各运动部件的润滑,尤其是变径滑板,导杆和变径丝杠,必须每日润滑。(HUTEC温馨提示您:在雨季和夏季时要做好防锈工作) 2.保持工业机械手设备的清洁:保持工业机械手及其周围环境的清洁,即时是肉眼看不见的微小灰尘进入导轨,也会增加导轨的磨损,振动和噪声,因此必须保持环境清洁。 3.每日检查电极工作面的磨损情况,如发现焊接电极沟 槽过深或粘附严重,应立即修复或更换。 4.根据焊接机械手设备的运转情况和使用情况如工作量,使用时间的长短而确定的定期维护和保养。 5.安装应注意:工业机械手在使用安装时要认真仔细,不允许强力冲压,不允许用锤子敲击导轨,否则会引起工业机械手内部或其表面损坏,影响其精度。 6.安装工具要适合:工业机械手使用适合、精确的安装工具,尽量使用专用工具。避免使用布类和短纤维之类的东西,防止细小碎屑静茹工业机械手而影响工业机械手的性能。 工业机械手又称 直轨,滑轨,线性滑轨,它拥有比直线轴承更高的额定负载。同时也有一定的扭矩,可在高可在高负载的情况下实现高精度的直线运动。其作用是用来支撑和引导运动部件,按给定的方向做往复直线运动。 工业机械手分为滑动摩擦导轨、滚动摩擦导轨、弹性摩擦导轨、流体摩擦导轨等种类。经实践证明工业机械手主要是用在精度要求比较高的机械结构上,工业机械手的移动元件和固定元件之间不用中间介质,而用滚动钢球。

滚珠丝杆的选型方法

丝杠的选型范例 1.设定螺距(L) 根据马达的最大转速与快速进给速度     2.计算基本动额定负载 范例所需基本动额定负载与容许转速(DmN值)的各动作模式下的轴向负载的计算                                             A.加速时                                             轴向负载(Pa)=Wα+μWg≈343(N)    …

Read More

导轨出故障解决方法

目前针对机床导轨的划伤、拉伤问题可以采用高分子复合材料解决,其中应用成熟的有美嘉华技术体系。由于材料具有出色的粘着力、抗压强度及耐油、耐磨性能,可为部件提供一个长久的保护层。 工业用导轨大都由钢或铸铁制成,在长期的使用过程中,由于两个接触面间存在不同程度的摩擦,会造成导轨表面产生不同程度的划伤及拉伤,严重影响设备的加工精度和生产效率。传统修复方法通常采用金属板镶贴或更换等方法,但需要进行大量精确的加工制造和人工刮研,修复需要的工序多,工期长。

滑台模组步进电机烧坏的原因

步进电机往往也用于滑台模组中,提升其各方面的性能。步进电机被烧坏了就会影响模组无法正常运行。 1.结构与特长:是能将安装有LM直线导轨和铝合金基座,与气缸驱动组合的单轴智能组合单元。以输送作为其主要的用途。 2.组件标准化:实现气动设备的模块组件标准化。在搬运、传动、输送等作业中,水平方向和垂直方向均可使用。电动滑台可替换气缸而且价格低、寿命长、维护保养容易。 3.耐腐蚀性:基座和滑座可选择铝合金其表面经过高耐腐蚀和耐磨性铝合金防蚀钝化处理(本色阳极氧化处理)此外选用不锈钢直线导轨、安装螺钉也全部使用特殊处理的电镀镍材质,因此具备充分的耐腐蚀性。 4.轻量化高刚性:使用挤制铝合金型材制造的基座与直线导轨相结合因而实现了轻量化和高刚性。高刚性、高精度、价格低、体积小、重量轻、铝合金结构、模组化设计、滑动台和底座经过阳极处后装入直线导轨,基座与滑动台搭配,实现了高刚性和负载容量。对负载负荷的变位量小,用于搭载的质量或外部负载变动的用途也能依然保持高稳定性。 电机烧坏的原因主要有如下六个: 1.电机受潮:因为进水或受潮造成的绝缘降低,也是常见的损坏原因,要做好日常的防护。注意和定期测验绝缘。尤其是用变频器驱动的电机,更要小心此项,不然可能连变频器一块损坏。 2.电机内部原因:因轴承损坏,造成端盖磨损、主轴磨损、转子扫膛、造成线包损伤烧毁也是个主要原因。 3.其它原因:如电压过低或过高,震动造成接线柱松脱相间短路,虫鼠危害、电机额定电压与实际电压不配合。各种减压起动回路故障造成不转换,步进电机长时间低压工作等等。 4.过载:如果是保护功能正常(加装合适的热继电器),一般不会发生。但是,要注意的是,因热继电器无法校验,并且保护数值也不十分精确,选型不合适等等加上 人为设置成自动复位,所以需要保护的时候,往往起不到作用,也可能多次保护以后,没有找到真正原因,人为调高保护数值。至使保护失效。 5.缺相运行:如果此时滑台模组电机的噪声很大,并且严重发热,这也是三相异步电机的致命,一般运行十几分钟就烧坏了。若是整个供电系统缺相,很有可能造成多台电机损坏。山社电机工程师建议对于单台电机最好的解决办法是加装电子的缺相保护器(重要电机一定要用这个)。还有就是三相回路中的保险若是某一相熔断也是个造成缺相的原因。

直角坐标机器人的主要特点和选型

直角坐标机器人主要由一些直线运动单元,驱动电机,控制系统和末端操纵器组成。针对不同的应用,可以方便快速组合成不同维数,不同行程和不同带载能力的壁挂式、悬臂式、龙门式或倒挂式等各种形式的直角坐标机器人。从简单的二维机器人到复杂的五维机器人就有上百种结构形式的成功应用案例。从食品生产到汽车装配等各行各业的自动化生产线中,都有各式各样的多台直角坐标机器人和其它设备严格同步协调工作。 可以说直角坐标机器人几乎能胜任几乎所有的产业自动化任务。下面是其主要特点: 1.任意组合成各种结构样式,带载能力和尺寸的机器人。 2.采用多根直线运动单元级连和齿轮齿条传动,可以形成几十米的超大行程机器人。 3.采用多根直线运动单元平连或带多滑块结构时其负载能力可增加到数吨。 4.其最大运行速度可达到每秒8米,加速度可达到每秒4米。 5.重复定位精度可达到0.05mm~0.01mm。 6.采用带有RTCP功能的五轴或五轴以上数控系统能完成非常复杂轨迹的工作。 直角坐标机器人的选型 1.机器人结构形式选择 根据前面“使用要求分析”中获得的信息资料来选择机器人的结构形式。原则上尽可能选择龙门式直角坐标机器人,但有时受工作空间限制必须选择悬臂式。在食品搬运和玻璃切割等项目中会产生大量粉末,伤害运动轴里面的导轨,此时最好采用悬挂式机器人。有时根据负载及运动间隔和空间限制必须选用挂臂式。根据机器人的工作任务来确定负载的运动位置精度要求,要考虑减速时晃动产生的位置误差。根据机器人的工作任务及其工作空间上的限制来确定运动轴数目及各自运动行程。 2.规划运动轨迹及计算运动速度 根据机器人的工作任务和空间限制来规划运动轨迹。尽可能减少运动间隔,对工作周期要求严的应用要尽可能运用多轴同时运动来减少运动时间和降低运动速度。抓取负载后运动速度要低,空载返回原始点时要快。负载大时加速度和减速度要小,尽可能避免产生巨大的冲击力。根据上面的原则给出各段运动的速度,加速度和减速度。各个运动段间尽可能平稳变速以保证工作周期,减少冲击力和运行噪音。在运动速度分配时要充分考虑各个运动过程与其它设备间的同步协调时间,而且规划的运动时间要比用户要求的时间短些。 3.受力分析 根据速度分析得出各个轴的最大加速度和减速度。然后再计算出多轴同时运动时产生的合成最大减速度。选择独立运动的减速度和同时运动时合成减速度二者中大的减速度,根据这个最大的减速度计算出XYZ三个方向的最大冲击力Fx,Fy和Fz及产生的最大扭曲力矩Mx,My和Mz。在计算不同轴扭曲力矩Mx,My和Mz时要考虑等效负载的重心位置,总重力和减速时产生的冲击力。 4.变形分析 绕度形变仅在大跨度悬空方式下,而且受力很大的情况下才发生。其绕度形变量的计算方法见下面的公式。 f=(F×L3)/(E×I×192) f:挠度形变(mm)f≤1mm F:负载压力(N) L:导轨长度(mm) E:弹性模量(70,000N/mm2) I:面积平方(mm4) 在很多任务中可以答应在运动中有一定量的变形,但在玻璃切割机等数控设备类的应用中是不答应产生变形的。 1.使用要求分析 对于选型的职员首先要有物理运动学基础,材料力学基础,伺服驱动使用和数控系统的应用经验,但最主要是把题目和要求等介绍很清楚。对于简单任务和有经验的工程师通过电话和邮件就可以沟通好,而对复杂的任务要到现场双方共同分析和制定任务描述,给出具体公道的要求。 下面是主要的数据和信息: 机器人的工作任务, 手抓和负载的总重量, 一个完整的工作周期是多少秒,可能分解成的子运动及对应的时间, 运动和取抓过程中与其它设备的同步/握手要求, 各个运动轴的有效运动长度及答应的最大运行速度, 机器人工作四周空间上的限制, 使用环境有粉末,高温,湿度等特殊防护要求。 2.选择驱动电机 根据直线定位单元驱动轴的最高转速来选择驱动电机。当驱动轴的最高转速低于600转/分时通常选用步进电机,否则要选用交流伺服电机。但交流伺服电机的最高转速不要超过3000转/分,否则影响其寿命。 当选用步进电机做驱动轴时,其负载的转动惯量与步进电机的转动惯量比要小于12,当选用伺服电机做驱动轴时,其负载的转动惯量与伺服电机的转动惯量比要小于8,否则影响其高动态特性。但转动惯量比大于上面的数值时,要加减速机。在不超过驱动电机最高转速限制情况下,要尽量选择大减速比的减速机。为了保证高的动态特性,保证在约定的时间内完成任务,驱动电机的最大出力要比理论计算值至少高出85%。通常所选择的驱动电机的最大出力要比理论计算值至少高出100%,而转动惯量比要小于5。 3.确定机器人的结构及各个运动轴 根据上面6个方面的信息和数据就可以终极选定机器人的结构形式及每个运动轴的具体型号和长度等,通常我们能从图片库中找出同样结构的照片,这里的照片是指CAD图或以往用户机器人的照片。还要设计好各个轴间的连接板,不仅要考虑机械方面的装配配合精度,材料的物理强度,连接螺丝杆的拉力等,更要考虑在主要受冲击方向加大加强连接板,必要时增加连接板。主要螺丝杆和螺丝帽要加胶,以防长期振动后变松动。 机器人在加速和减速时会产生强大的冲击力,而且通常天天要工作24小时,所以机器人必须被牢固地安装在支架上。机器人的支架要有足够的抗冲击力,要有地脚,以保证在长期高速高动态运动冲击下,没有任何晃动。此外在安装时要保证运动轴间的平行度、平面度和垂直度。 4.选择末端操纵器——手爪系统 根据其具体应用情况,其手爪系统可能是气动吸盘,气动夹取手爪,电动夹取手爪,电磁吸取手爪,焊枪,胶枪,专用工具和检测仪器等。在很多场合可以一次抓取多个工件。

导轨的设计原则

1.运动灵敏度和定位精度 运动灵敏度是指运动构件能实现的最小行程;定位精度是指运动构件能按要求停止在指定位置的能力。运动灵敏度和定位精度与导轨类型、摩擦特性、运动速度、传动刚度、运动构件质量等因素有关。 2.运动平稳性 直线运动导轨的几何精度一般包括:垂直平面和水平平面内的直线度;两条导轨面间的平行度。导轨几何精度可以用导轨全长上的误差或单位长度上的误差表示。 导轨运动平稳性是指导轨在低速运动或微量移动时不出现爬行现象的性能。平稳性与导轨的结构、导轨副材料的匹配、润滑状况、润滑剂性质及导轨运动之传动系统的刚度等因素有关。 3.抗振性与稳定性 抗振性是指导轨副承受受迫振动和冲击的能力,而稳定性是指在给定的运转条件下不出现自激振动的性能。 4.刚度 导轨抵抗受力变形的能力。变形将影响构件之间的相对位置和导向精度,这对于精密机械与仪器尤为重要。导轨变形包括导轨本体变形导轨副接触变形,两者均应考虑。 2.精度保持性 精度保持性是指导轨工作过程中保持原有几何精度的能力。导轨的精度保持性主要取决于导轨的耐磨性极其尺寸稳定性。耐磨性与导轨副的材料匹配、受力、加工精度、润滑方式和防护装置的性能的因素有关,另外,导轨及其支承件内的残余应力也会影响导轨的精度保持性。

如何选择直线模组伺服马达的控制方式?

直线模组伺服电机的控制方式有:位置、速度、力矩三种控制模式。 一般直线模组滑台驱动器控制的好不好,有个比较简单的方式叫响应带宽,当转矩控制或者速度控制时通过脉冲发生器给他一个方波信号,使电机不断正,反转,不断的调高频率,示波器上显示的是扫频信号 ,当包缝线的顶点达到顶值时表示已经失步,这时的频率的高低,就能显示出谁的产品好。一般的电流环能到10000赫兹以上,而速度环只到几十。 1.转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2.位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3.速度控制:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但要把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。 就伺服驱动器的响应速度来看,转矩模式运算量小,驱动器对控制信号的响应快;位置模式运算量大,驱动器对控制信号的响应慢。 速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的,具体采用什么控制方式要根据客户对直线模组伺服电机的要求来选择: 1)对电机的速度、位置都没有要求,只要输出一个恒转矩,用转矩模式是合适; 2)对位置和速度有精度要求,而用转矩模式不太方便,可 先速度或位置模式,上位控制器有比较好的闭环控制功能,用速度控制效果会好一点; 3)对运动中的动态性能有比较高的要求时,需要实时对电机进行调整,控制器本身的运算速度也很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度控制方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,效率提高。

机器人由哪些部件构成?

机器人作为一个系统,它由如下部件构成: 机械手或移动车:这是机器人的主体部分,由连杆,活动关节以及其它结构部件构成,使机器人达到空间的某一位置。如果没有其它部件,仅机械手本身并不是机器人。

滚动直线导轨的分类,特点

滚动直线导轨副的分类、特点 各类产品的共性: 直线导轨副是实现无限接长以及批量提供互换性导轨副。由于关键生产设备及检测设备都是引进的德国、意大利、日本、美国等的先进设备,所使用的关键工具、刀具等也是引进的国际上著名厂家的产品以及长年积累的先进生产技术和测量技术等保证了HTPM产品高精度及质量的稳定性,大批量生产的直线导轨90%以上可以达到2级以上,并可以生产原作为发展级别的1级精度产品。 使用高质量的钢种及精湛的热处理加工技术,通过严格的过程控制,保证产品卓越的耐用性。 圆滑的反向器循环结构及滑块的过渡曲线的设计与制造,使HTPM产品运动流畅、振动及噪声小。通过严格试验,精心选用特殊具有自润滑性能、耐冲击能力强的工程塑料,满足HTPM产品的高速和高加速的要求。 控制导轨弯曲变形量,安装孔孔距精度高,保证HTPM产品安装方便。 设计精度和性能指标以替代进口为目标。 各类产品的特性: 类双圆弧型(LG) 沟槽采用独特的类双圆弧结构,具有优异的静刚度和耐冲击性、高精度、误差均化能力强等性能指标。将滚珠和沟槽之间的接触角度设定为45°,使上下左右方向负载的承受能力及刚性均匀;承受冲击载荷和重载荷作用时,承载接触区增大,提高了系统的刚度;使在超高负载的情况下,也能将负载转移到非接触表面,为此,大幅度地提高了产品本身的耐冲击性;容易精确测量轨道的各项精度,从而稳定地生产高精度直线导轨。 主要用于加工中心、数控铣床、数控车床、平面磨床、座标磨床、工艺机器人、电火花加工机床等等对精度要求较高或对刚性要求较高的机床。 微型(LM/LMW) 左右各1列滚道的精巧设计,体积小、轻量化;沟槽设计为哥特式结构,其接触角均为45°,因而上下左右四个方向都具有均等的刚性和负载能力;LMW系列由于导轨幅度宽,在横向扭矩方面具有高刚性和大负载能力,满足单根使用的各种装置。在有限的空间内优化设计,尽可能大地用大直径的钢球,以提高其刚性及负载能力。 主要用于半导体制造设备、印刷电路板IC组装设备、医疗设备、机械手臂、精密测量仪器、光学平台。 单圆弧型(LGS) 采用DF结构,对安装误差的吸收能力大;将滚珠和沟槽之间的接触角度设定为45°,使上下左右四方向负载的承受能力均匀,并且各方向都具有足够的刚性;采用新型的双唇密封端盖,比传统的密封端盖更能提高防尘和防污染物的能力;增加顶密封装置,使导轨副形成了全封闭型的有效密封,使顶部形成双保险;为适应更恶劣的使用环境,使用新型不锈钢防护带保护导轨的顶面并封闭导轨的安装孔,使密封效果更加完美。 主要用于木工机械、材料供给装置系统、电火花加工机床、激光加工机械、光学机械测量台、轻工机械设备等,特别适用于密封要求严格或安装基础误差较大的场合。 滚柱型(LGR) 以圆柱滚子代替钢球,滚子与导轨、滑块为线接触,在承受高负荷时仅仅形成微小的弹性变形,大幅提高导轨的刚性值;采用DB45°组合,能承受上下左右四方向等载荷,并且各方向都具有超高的承载能力和刚性;专用导轨磨床实现三面同时磨削,使产品具有极高的精度;滑块两端装有密封端盖,滑块内部和底部装有密封底片,具有优异的防尘性能,从而保证了产品的使用寿命,为适应更恶劣的使用环境,可选择不锈钢防护带板和安装双层密封端盖。 主要用于加工中心、NC车铣床、NC复合加工机床、磨床、立式或卧式镗、铣床和各大型落地数控镗铣、龙门式加工中心等大、重型机床,特别适合超高精度、超重负荷或高速机床等高档机床使用。

滑台模组安全实用的五大注意事项

滑台模组是一种高自动化装置,在整个实用过程中都要特别注意安全问题,稍不注意就会导致不堪设想的后果, 应该注意以下5点事项: 1、禁止在带有磁电妨害可能的情况下使用,在有电磁、静电气放电、无线磁波妨害的场所,不要使用错误操作会造成危险。     2、如果取出马达的话,会有上下轴滑落的危险,切断控制器电源,取出请用台挡住上下周轴,请注意尽量不要让身体夹在上下周驱动部分及上下轴和架台之间。   3、终端效果的设计操作是为了不让动力(电力、空气y压力等)消失或冲动而产生危险,终端效果会在夹持物体落下时的危险,为该物体的大小、重量、温度、化学性质的勘测,适当采取安全检查防护措施。   4、禁止任何可燃性气体等环境中使用。不要在可燃性气体、可燃性粉末、引火性液体等欢迎里面使用,有爆发、引火的可能性。   5、解除刹车的话,有上下轴下滑的危险,按急停按钮、解除刹车之前、请用台挡住上下轴,进行解除刹车时,请注意保护不要被夹在上下轴和架台之间。   直线模组轴承的技术突破:   1、结构简洁,可节省机械设计空间,具有多种安装与连接方式和附件可供设计选择,节省时间,维修方便,伺服滑台可靠性高、指令系统简单、编程简便易学、易于掌握、体积小、维修工作少、现场接口安装方便等一系列优点。技术选型方面, 尽量让品牌之间互换性更强。     2、材质方面,铝合金缸体各个品牌逐步统一采购统一品质的材质,这样质量上可以有保证。     3、技术寿命上,现在很多轴承的厂家逐步改进他们的使用寿命,同样也带来稳定性。    只有严格遵循相关的操作规程才能更好的发挥出线性滑台模组的作用,尽可能的减少故障的发生

工业机器人控制系统的性能

2016年,不简单!在这一年,机器人行业实现了快速的发展。从猴年央视春节晚会上大放异彩的机器人舞蹈到现在遍地开花的各大机器人操作系统、控制系统企业,从全国各地的机器人大会、机器人论坛到机器人与互联网运营、大数据等新兴技术的结合,我们惊奇的发现,机器人早已不是过去那个只会重复体力劳动的“大笨熊”,而是越发的智能化和个性化。 现在,越来越多的机器人进入那些“百姓”企业,企业在欢庆的同时,也盘算着自己心里的“小九九”——机器人的控制系统性能如何呢? 在机器人行业,提到性能规范,一般是针对整机而言。评价工业机器人整机性能的指标有很多,基于不同的的设计目的以及用途,其整机配件搭配、结构设计以及参数调整也有所差异,控制系统只是其中的一个环节,发动机(伺服电机)、变速箱(减速器)、底盘/悬挂(结构件)等对机器人整体的性能都有很大的影响。 一般来说,工业机器人控制系统的性能可以由机器人的位姿精度和轨迹精度来间接表示。 位姿精度(PoseAccuracy) 机器人的位姿精度一般指位姿重复度。 机器人的位姿是指机器人相对于某一参考坐标系的位姿,其重复位姿精度是机器人的一项最重要的技术指标,该指标集中反映机器人的机电性能和使用效果,即机器人对同一指令位姿从同一方向重复响应n次后实到位姿的一致程度。一般采用激光跟踪仪进行位姿精度的测量,如下图所示: 想要达到较高的位姿精度,需要控制系统提供以下功能: 补偿机械连杆的运动学参数误差,如连杆加工误差、装配误差、机械公差等; 补偿关节柔性及连杆柔性; 提供高精度的机械零点标定功能。 轨迹精度(PathAccuracy) 机器人的轨迹精度,一般是指轨迹重复精度,表示机器人对同一轨迹指令重复n次时实到轨迹的一致程度。一般也采用激光跟踪仪进行测试,让机器人重复走某一条轨迹n次,然后取由n条轨迹组成的轨迹条横切面的半径。如下图所示:

谈谈直线导轨的选型

直线导轨副一般由导轨、滑块、反向器、滚动体和保持器等组成,它是一种新型的作相对往复直线运动的滚动支承,能以滑块和导轨间的钢球滚动来代替直接的滑动接触,并且滚动体可以借助反向器在滚道和滑块内实现无限循环,具有结构简单、动静摩擦系数小、定位精度高、精度保持性好等优点。 选型步骤和参数考量: 1.确定滑轨宽度。 根据载荷确定直线导轨的型号。一般直线导轨是以滑轨的宽度为标准制定型号规格。滑轨的宽度亦称轨宽。轨宽是决定其负载大小的关键因素之一,四排滚珠(也有部分两排珠的)的方轨现货产品一般有15、20、25(23)、30(28)、35(34)、45、55(53)、65(63),某些品牌最大只生产到45规格,小的可能只到30。期货产品也有85、120等,但大部分厂家不生产。 微型滑轨(基本是两排滚珠)规格有3、5、7、9、12、15,上述6个规格又各有一个宽型规格(滑轨宽度是标准型的2倍,其中15型滑轨的安装孔是2列),一共12种,但是有些厂家不能生产7以下的型号,具体请咨询该品牌供应商。注:()中是实际轨宽。 2.确定滑轨长度。 这个长度是轨的总长,不是行程。全长=有效行程+滑块间距(2个以上滑块)+滑块长度×滑块数量+两端的安全行程,如果增加了防护罩,需要加上两端防护罩的压缩长度。需要注意的是,事先问清楚该品牌该规格导轨整支的最大长度,超过这个长度是需要对接使用的。多数厂家整支长度最大是4000(微轨一般是1000),有些是3000,这和厂家的加工设备有关。需要对接并且用户想事先在机器上加工安装孔的情况下最好提供接口图纸。另一点请特别注意,导轨上的安装孔孔间距是固定的,用户在确定轨长时要注意位置,例:20的轨,孔间距是60mm如果定制长度为600的滑轨,如果不告诉供应商需要的端部尺寸,一般到货的状态是10个安装孔,导轨两端面到各自最近的安装孔中心的距离是30、30。空端距不一样则要跟供应商具体说明。各品牌对端部尺寸的出货规定多数是默认两端相等。 3.确定滑块类型和数量。 常用的滑块是两种:法兰型,方形。前者高度低一点,但是宽一点,安装孔是贯穿螺纹孔,后者高一点,窄一点,安装孔是螺纹盲孔。两者均有短型、标准型和加长型之分(有的品牌也称为中负荷、重负荷和超重负荷),主要的区别是滑块本体(金属部分)长度不同,当然安装孔的孔间距也可能不同,多数短型滑块只有2个安装孔。滑块的数量应由用户通过安全载荷计算确定。滑块类型和数量与滑轨宽度构成负载大小的三要素。 4.确定精度等级。 任何厂家的产品都会标注精度等级,有些厂家的标注比较科学,一般采用该等级名称的第一个字母,如普通级标N,精密级标P。精度是个综合概念,一般由滑块基准侧面相对同侧滑轨侧面的行走直线误差、组合高度误差,滑轨侧面至滑块基准侧面宽度误差、成对高度误差以及成对宽度误差构成。对于多数产业机械,普通级精度可以满足要求,高一点的就选H级,数控机床等设备以选择P级常见,其他超精密机械选择SP(超级精度)、UP(顶级精度)为宜。后面3个等级需要苛刻的安装、使用条件才能展示其性能。 5.确定其他参数 除上述4个主要参数外,还有一些参数需要确定,例如组合高度类型、预压等级等。 组合高度类型主要有2类:高组装型和低组装型。 顾名思义,高组装型的组合高度(滑轨的底面到滑块的顶面)要高一些,而低组装型要低一些,视规格大小差异在2~7mm之间,造成这个差异的原因是滑块高度尺寸不同,一般与滑轨无关(也有部分品牌轨和块均不同)。这两种类型对导轨副其他参数影响不太,用户都可以选用。我提示两点:一是高组装型多数品牌现货供应,低组装型可能备货较少,考虑到以后损坏的订货时间,尽量选前者。二是高组装型的滑块一般会比低组装型的贵一点点。 预压等级高的表示滑块和滑轨之间的间隙小或为负间隙,预压等级低的反之。感官区别就是等级高的滑块滑动阻力大,等级低的阻力小。表示方法得看厂家选型样本,等级数有3级的,也有5级的。等级的选择要看用户的实际使用场合,大致的原则是滑轨规格大、负载大、有冲击、精度高的场合可以选预压等级高一点的,反之选低一点。提示:1–预压等级与质量无关,2—预压等级与滑轨使用精度成正比,与使用寿命成反比。

自动化机械手与工业机械手的区别

自动化机械手与工业机械手都是属于机械手的范围的,都是用于加工生产。 根据自动化机械手及自动生产线在国民经济各行业应用的情况,具有以下一些特点。 1.原材料多样化 第一大类是包括机械加工、轻工机械等以金属材料作为加工的原料,如钟表、缝纫机、自行车和家用电器等的加工。 第二大类是以农、林、牧、副及化工产品等作为加工的原料,如食品机械中的糕点机械以农产品为主要原料;罐头、酿造机械以农、副产品为主要加工原料;制浆造纸机械以林产品和农副产品为原材料;皮革机械以畜牧产品为主要原料;陶瓷、玻璃、则以矿物、化工产品为其原料。其表明自动化机械手及自动生产线应用领域广泛。 2.自动化机械手及自动生产线工艺种类多样化; 1)完成机械作用的有金属切削、装配。 2)完成物理作用的有烟草。 3)完成作用的有发酵。 4)完成电化学作用的有电镀与电腐蚀。 5)完成化学作用的有造纸机械中的蒸煮、灯泡机械中的熔炼。 3.门类繁多,结构多样化 工业门类多,使用的机械因行业、加工的产品、功能与作用的不同,因而在原理与运动机构上有着很大差异,甚至完成同一职能的也会有不同的工作原理与不同的机构。如机械加工生产线加工同一种产品可以使用不同的设备,应用到的自动化机械手与自动生产线也有所不同;有着各种不同的工艺原理和结构;灯泡绕丝机因工艺原理的不同,有无芯、有芯连续和有芯不连续绕丝机之分。 4.产品量大、自动化程度高 工业产品为人民日常生活所必需,因而要求成批大量生产,也就必然要求广泛采用半自动化、自动化的机械手,随之自动生产线的应用也日益广泛。 5.机械手往往具有动作复杂、机构运动速度高、涉及学科领域广、更新换代快等特点。 工业机械手是:能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。 工业机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。 在现代生产过程中,机械手被广泛的运用于自动生产线中,机器人的研制和生产已成为高技术领域内,迅速发展起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。 机械手虽然还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 自动化机械手由5大部分组成: 驱动系统:它是自动机械手的动力来源,可以是电动机驱动、液压驱动、气压驱动等。 传动系统:它的功能是将运动和动力传递给各种执行机构,以便完成自动化机械手的工艺操作,同时也将运动传给辅助机构完成辅助动作。其中包括皮带传动、齿轮传动机构等。 执行机构:它是实现自动化操作与辅助操作的部分,其动作顺序与运动规律依工艺原理和要求而定。 控制系统:它的功能是控制机器的驱动系统、传动系统、执行机构,将运动分配给各执行机构,使它们按时、按顺序进行协调动作。 检测系统:它的功能是对自动化机械手的位置、行程、速度、压力、流量等进行检测并反馈给控制系统。

直线导轨使用中的保养方法

直线导轨在使用中,由于受到外部环境的影响,造成它们非常容易被锈蚀。直线导轨锈蚀主要是由两种原因造成的:一是轴承自身的金属侵蚀,二是工具要素的侵蚀。直线导轨自身的金属侵蚀占绝大比例,由于工作环境的特殊原因,很多时候生锈是无法避免。特别是天气比较热的时候,操作人员的手汗也能造成直线导轨锈蚀,这是因为人体汗液接触轴承时会在其表面发生汗液膜,在金属表面汗液里的盐分跟金属反映而招致侵蚀。当然如果有有效的保护措施,这种情况完全能够避免,如带上专业拿取零件的专业的手套来安装操作。直线导轨的金属侵蚀会影响导轨的哪些方面呢?一,表面光亮度;二,金属资料的化学结构和成分;三,金属表面的溶液成分及PH值。 除了在直线导轨职业外,那类润滑脂的使用量最大高速线材轧机轴承,约占分用脂量的70%。因为那类润滑脂选用了纤维娇嫩、轻难过滤的锂白做稠化剂,使用矿藏油为底子油,很轻难知脚外等级低深沟球轴承下降振荡值的需求。另一个利益是具无劣良的泵送性,不管是机械加脂,仍是手艺涂脂,都简练难行。而且,该润滑脂的代价低价,可以大大下降轴承本钱。可是,因为使用了矿藏底子油,使那类润滑脂正在除锈和防锈机能以外的一些理化目标上大打合扣。如轴承寿数只能到达200小时,直线导轨常见问题。起动和工作力矩正在-20℃测验时就无难题。该类润滑脂使用温度通常为-20~120℃,当正在150℃以上高温使用时,会泛起底子油蒸腾过快,流掉严肃等表象,大大缩短VAV直线导轨使用寿数。 当前,使用细密轴承的设备日趋精细化,促进直线导轨所用的润滑脂必需具无以下机能: (1)具无和直线导轨相同的工作寿数,尽量耽搁保护周期,缩短停机时刻,行进劳作出产率。 (2)正在dn>5×105的高速下要保证电机温升低,不甩油,然后下降功耗,保护电机。 (3)其纯量含量控制正在必定规范之下,最大地减少设备噪声对状况的污染。 (4)正在超低温工做前提下保证直线导轨起动和工作的灵性,直线导轨常见问题。保证输出功率最小。拆下来的深沟球轴承的清洁,分粗清洁和细清洁,别离放在容器中,先放上金属的网垫底,使轴承不直接触摸容器的脏物。粗清洁时,假设使直线导轨带着脏物旋转,会损害深沟球轴承的翻滚面,大概加以留心。

机器人设计中用步进电机的优点有哪些?

步进电机低速大扭矩设备,使传输更短这意味着更高的可靠性,更高的效率,更小间隙和更低的成本。正是这一特点,使得步进理想的机器人,因为大多数机器人运动是短距离要求高加速度达到低点的循环周期。 功率-重量比高于直流电动机低。大多数机器人运动是不是长距离高速(因此高功率),但通常包括短距离的停止和启动。在低转速高扭矩他们是理想的机器人。 步进电机定位装置,所以不能有错误的工作,例如过度的负荷下不会放缓,但将停止。它们不能被用来发挥独立的位置的力。 机器人是位置的设备,旨在进入精确位置没有错误。在一档或碰撞时看门狗编码器报告错误并停止进一步的动作的机器人。 机器人设计中选用用步进电机的优点: 1 对于同等性能的步进电机更便宜 2 步进电机是无刷电机等有更长的寿命。 3 作为数字马达就可以准确地定位不打猎或过冲。 4 驱动模块不是线性放大器这意味着更少的散热片,更高的效率,更高的可靠性。 5 驱动模块比线性放大器比较便宜。 6 没有昂贵的伺服控制的电子元件,因为信号直接从MPU起源。 7 软件故障安全。主控板问题步进脉冲。如果该软件无法工作或崩溃电机停止。 8 电子驱动器故障 – 安全。如遇驱动放大器故障的电机锁固,将无法运行。当伺服驱动器发生故障的电机仍然可以运行,可能在全速运转。 9 速度控制精确和可重复的(晶体控制)。 10 如果需要,步进电机运行极为缓慢。

滑台模组电机烧坏的原因有哪些?

步进电机往往也用于滑台模组中,提升其各方面的性能。 电机烧坏的原因有哪些? 1.电机受潮:因为进水或受潮造成的绝缘降低,也是常见的损坏原因,要做好日常的防护。注意和定期测验绝缘。尤其是用变频器驱动的电机,更要小心此项,不然可能连变频器一块损坏。 2.电机内部原因:因轴承损坏,造成端盖磨损、主轴磨损、转子扫膛、造成线包损伤烧毁也是个主要原因。 3.其它原因:如电压过低或过高,震动造成接线柱松脱相间短路,虫鼠危害、电机额定电压与实际电压不配合。各种减压起动回路故障造成不转换,步进电机长时间低压工作等等。 4.过载:如果是保护功能正常(加装合适的热继电器),一般不会发生。但是,要注意的是,因热继电器无法校验,并且保护数值也不十分精确,选型不合适等等加上 人为设置成自动复位,所以需要保护的时候,往往起不到作用,也可能多次保护以后,没有找到真正原因,人为调高保护数值。至使保护失效。 5.缺相运行:如果此时滑台模组电机的噪声很大,并且严重发热,这也是三相异步电机的致命,一般运行十几分钟就烧坏了。若是整个供电系统缺相,很有可能造成多台电机损坏。山社电机工程师建议对于单台电机最好的解决办法是加装电子的缺相保护器。还有就是三相回路中的保险若是某一相熔断也是个造成缺相的原因。 步进电机往往也用于滑台模组中,提升其各方面的性能。 特点: 1.结构与特长:是能将安装有LM直线导轨和铝合金基座,与气缸驱动组合的单轴智能组合单元。以输送作为其主要的用途。 2.组件标准化:实现气动设备的模块组件标准化。在搬运、传动、输送等作业中,水平方向和垂直方向均可使用。电动滑台可替换气缸而且价格低、寿命长、维护保养容易。 3.耐腐蚀性:基座和滑座可选择铝合金其表面经过高耐腐蚀和耐磨性铝合金防蚀钝化处理(本色阳极氧化处理)此外选用不锈钢直线导轨、安装螺钉也全部使用特殊处理的电镀镍材质,因此具备充分的耐腐蚀性。 4.轻量化高刚性:使用挤制铝合金型材制造的基座与直线导轨相结合因而实现了轻量化和高刚性。高刚性、高精度、价格低、体积小、重量轻、铝合金结构、模组化设计、滑动台和底座经过阳极处后装入直线导轨,基座与滑动台搭配,实现了高刚性和负载容量。对负载负荷的变位量小,用于搭载的质量或外部负载变动的用途也能依然保持高稳定性。

手动滑台的优势

手动滑台模组主要应用在工装夹取、定位、自动化工作站、移栽、半导体设备以及机械内部XYZ轴工作平台、点胶、锁螺丝、视觉检测、量测设备等高速高精度等场所。 1.定位精度高:采用滚动结构,摩擦小,定位精度高,可长期使用。由手动检测平台标准位置按一定方向依次进行定位,然后在各自的位置上,根据标准位置,测定实际移动距离和应移动距离之间的差。反复测试7次,然后求它们的平均值。测试几乎包括整个移动距离,机型不同时,则应按照各机型规定的测试间隔进行测试,将由各自位置得出的平均值最大值作为测定值。 2.免维护保养:滑块,直线导轨部位为标准件。能够在通常的运行条件下,使用5年或运行10000km而不用维护保养。若能按照规定方法补充润滑脂,则能使用寿命更长。 3.选择多元化:可根据客户的行业来选配:塑胶手轮、折叠型手轮和铝合金手轮。可通过手轮加装角度尺、位置显示器、转数计数器或重力指示器。通过手轮和单头、多头或左右对开的梯形牙丝杆传动。滑台与底座框架可搭配指示尺和指示板来來检测工件精度。 4.结构与特长:滑动台和基座采用A6063S-T5铝合金材质、高刚性、高精度、价格低、体积小、重量轻、铝合金结构、模组化设计、滑动台和底座经过阳极处后装入直线导轨,基座与滑动台搭配,实现了高刚性和负载容量。对负载负荷的变位量小,用于搭载的 质量或外部负载变动的用途也能依然保持高稳定性。

电缸-缸体类的新宠

一.电缸原理: 电缸是将伺服电机与丝杠一体化设计的模块化产品,将伺服电机的旋转运动转换成直线运动,同时将伺服电机最佳优点-精确转速控制,精确转数控制,精确扭矩控制转变成-精确速度控制,精确位置控制,精确推力控制;实现高精度直线运动系列的全新革命性产品。 二.电缸的组成: 三.电缸的特点: 闭环伺服控制,控制精度达到0.01mm;精密控制推力,增加压力传感器,控制精度可达1%;很容易与PLC等控制系统连接,实现高精密运动控制。噪音低,节能,干净,高刚性,抗冲击力,超长寿命,操作维护简单。电缸可以在恶劣环境下无故障,防护等级可以达到IP66。长期工作,并且实现高强度,高速度,高精度定位,运动平稳,低噪音。所以可以广泛的应用在造纸行业,化工行业,汽车行业,电子行业,机械自动化行业,焊接行业等。 低成本维护:电缸在复杂的环境下工作只需要定期的注脂润滑,并无易损件需要维护更换,将比液压系统和气压系统减少了大量的售后服务成本。 液压缸和气缸的最佳替代品:电缸可以完全替代液压缸和气缸,并且实现环境更环保,更节能,更干净的优点,很容易与PLC等控制系统连接,实现高精密运动控制。 配置灵活性:可以提供非常灵活的安装配置,全系列的安装组件:安装前法兰,后法兰,侧面法兰,尾部铰接,耳轴安装,导向模块等;可以与伺服电机直线安装,或者平行安装;可以增加各式附件:限位开关,行星减速机,预紧螺母等;驱动可以选择交流制动电机,直流电机,步进电机,伺服电机。 四.电缸选型会有哪些方面的指标要求? 1.关于电缸选型,首先要明确电缸的有效行程方面的问题。它的单位是mm。行程,它其实代表的是电缸运行的有效距离。一般来说的话低速度的,也就是100mm/s以下是可以在其我们看到的有效行程的基础上增加20mm左右的行程是没有问题的。为了避免电缸端部发生碰撞,我们在它的速度较高的情况可以是当地增加其余量,这样做的目的是为了方便调试,还要注意是为了避免前后极限位置发生碰撞。 2.关于电缸的选型还要注意的是其额定速度,它的单位是mm/s。是用来确定电缸满载时的额定速度。这个速度的话是直接的可以决定电缸对电机的驱动功率的。要根据自己的实际的需要来确定合适的速度,这样的话就可以有效的避免造成浪费。 3.关于电缸选型就是要注意额定出力了,它的单位是N或者kgf。这里我们要知道其推力和拉力的一致性。且对于整个的行程而言的话,它的出力大小也是相同的。所以一定要根据实际的情况来选择,并且留好一定的余量。 4.关于电缸的选择,我们可能要说的是它的定位精度,单位是mm,通常情况下是指重复定位精度,这里要说明的是选择合适的精度的话是可以降低成本,这一点还是蛮值得我们关注的。还有就是关于电源电压,单位V,这里的话,一把的电缸厂家都会提供许多的电压选择,会有直流、交流等多个电压段。 更多电缸3D选型请浏览:http://www.jujumi.com.cn/Home/SearchRelustList?val=%u7535%u7F38

手动滑台的特点

手动滑台模组主要应用在工装夹取、定位、自动化工作站、移栽、半导体设备以及机械内部XYZ轴工作平台、点胶、锁螺丝、视觉检测、量测设备等高速高精度等场所。 1.定位精度高:采用滚动结构,摩擦小,定位精度高,可长期使用。由手动检测平台标准位置按一定方向依次进行定位,然后在各自的位置上,根据标准位置,测定实际移动距离和应移动距离之间的差。反复测试7次,然后求它们的平均值。测试几乎包括整个移动距离,机型不同时,则应按照各机型规定的测试间隔进行测试,将由各自位置得出的平均值最大值作为测定值。 2.选择多元化:可根据客户的行业来选配:塑胶手轮、折叠型手轮和铝合金手轮。可通过手轮加装角度尺、位置显示器、转数计数器或重力指示器。通过手轮和单头、多头或左右对开的梯形牙丝杆传动。滑台与底座框架可搭配指示尺和指示板来來检测工件精度。 3.免维护保养:滑块,直线导轨部位为标准件。能够在通常的运行条件下,使用5年或运行10000km而不用维护保养。若能按照规定方法补充润滑脂,则能使用寿命更长。 4.结构与特长:滑动台和基座采用A6063S-T5铝合金材质、高刚性、高精度、价格低、体积小、重量轻、铝合金结构、模组化设计、滑动台和底座经过阳极处后装入直线导轨,基座与滑动台搭配,实现了高刚性和负载容量。对负载负荷的变位量小,用于搭载的 质量或外部负载变动的用途也能依然保持高稳定性。

直线导轨的特点有哪些?

直线导轨的三大特点有哪些? 特点一:所有方向皆具有高刚性 运用四列式圆弧沟槽,配合四列钢珠等45度之接触角度,让钢珠达到理想的两点接触构造,能承受来自上下和左右方向的负荷;在必要时更可施加预压以提高刚性。 特点二:自动调心能力 来自圆弧沟槽的DF组合,在安装的时候,藉由钢珠的弹性变形及接触点的转移,即使安装面多少有些偏差,也能被线轨滑块内部吸收,产生自动调心能力之效果而得到高精度稳定的平滑运动。 特点三:具有互换性 由于对生产制造精度严格管控,直线导轨尺寸能维持在一定的水准内,且滑块有保持器的设计以防止钢珠脱落,因此部份系列精度具可互换性,客户可依需要订购导轨或滑块,亦可分开储存导轨及滑块,以减少储存空间。

滚珠丝杆在模组中的相关应用

滚珠丝杆是是将回转运动转化为直线运动,或将直线运动转化为回转运动的理想的产品,它由于具有很小的摩擦阻力,滚珠丝杆被广泛应用于各种工业设备和精密仪器。 滚珠丝杆在模组中的应用特点有: 1.适应高速运动 采用滚动直线导轨的模组由于摩擦阻力小,可使所需的动力源及动力传递机构小型化,使驱动扭矩大大减少。可实现高速直线运动,提高机床的工作效率 2.承载能力强 滚动直线导轨具有较好的承载性能,可以承受不同方向的力和力矩载荷,如承受上下左右方向的力,以及颠簸力矩、摇动力矩和摆动力矩。因此,具有很好的载荷适应性。 3.可实现微量及高速进给: 滚珠丝杆副不会产生如滑动现象,能实现微量进给;只要进给脉冲足够小,滚珠丝杆副可实现微米级进给。 4.高寿命: 滚珠丝杆副之螺母,丝杆硬度均达到HRC58-62,滚珠硬度达到HRC62-66,且他们之间是滚动摩擦,故可实现较高的疲劳寿命和精度寿命。

使用直线导轨的注意事项

使用直线导轨应注意以下事项: 1.保持导轨及其周围环境的清洁即使肉眼看不见的微笑灰尘进入导轨,也会增加导轨的磨损,振动和噪声。 2.导轨在使用安装时要认真仔细,不允许强力冲压,不允许用锤直接敲击导轨,不允许通过滚动体传递压力。 3.导轨使用合适、准确的安装工具尽量使用专用工具,极力避免使用布类和短纤维之类的东西。 4.防止导轨的锈蚀,直接用手拿取上银导轨时,要充分洗去手上的汗液,并涂以优质矿物油后再进行操作,在雨季和夏季尤其要注意防锈。 因而在使用时要求有相当地慎重态度,即变是使用了高性能的上银导轨,如果使用不当,也不能达到预期的性能效果,而且容易使导轨损坏。 不过,在某种特殊的操作条件下,导轨可以获得较长于传统计算的寿命,特别是在轻负荷的情况下。这些特殊的操作条件就是,当滚动面(轨道及滚动件)被一润滑油膜有效地分隔及限制污染物所可能导致的表面破坏。事实上,在理想的条件下,所谓永久导轨寿命是可能的。 润滑保养:脂润滑有预先在密封型导轨中充填润滑脂的密封方式,以及在外壳内部充填适量润滑脂,每隔一段时间进行补充或更换的充填供脂方式。此外,对有多处导轨需要润滑的机械,还采用管道连接至各润滑处的集中供脂方式。脂润滑可做到充填一次润滑脂后长时间不需补充,而且其密封装置的结构也较简单,因此使用广泛。

伺服驱动器的注意事项

伺服驱动器注意事项 1、用户提供电源,DC12-24DC,电流≥100mA,如果电流极性接反,驱动器将不能工作。 2、采用屏蔽电缆时,线径≥0.12mm 2  (AWG24-26),屏蔽层需接地。 3、电缆长度尽可能短,控制CN1电缆不超过3米,反馈信号CN2电缆长度不超过20米。 4、建议采用三相隔离变压器供电,减少电击伤人的可能性;可以考虑增加电源滤波器,提高抗干扰能力。 5、如果负载是继电器等电感性负载,必须在负载两端反并联续流二极管;如果续流二极管反接,可能会损坏驱动。 6、请尽量安装非熔断型断路器使驱动器故障时能及时切断外部电源。 7、采用单端驱动方式,会使频率降低。 交流伺服驱动器作为现代工业自动化与运动控制的支撑性技术之一,由于其高速控制精准、调速范围广、动态特性和效率高,广泛应用于机床、印刷设备、包装设备、纺织设备、橡塑设备、电子半导体、风电/太阳能等新能源以及机器人、自动化生产线等领域。

直线模组由哪些部件组成?

直线模组在很多行业中都有着广泛的应用,它是一种能提供直线运动的动力机械。 直线模组主要有哪些部分组成? 1.伺服电机使滑台可以快速进退。利用滚珠丝杠和线轨获得较高的精度,可以用PLC控制,也可以直接利用机械手控制系统进行控制。运动速度、运动轨迹可以编程设置,实现各种运用需求。 2.滚珠丝杆支撑座选用的支撑座具有高刚性、高精度的超小型角接触球轴承,能获得稳定的回转性能。使用深沟球轴承的内部轴承中装入了适量的锂皂基润滑脂,用特殊密封垫圈进行密封,能直接安装,长期使用。 3.直线导轨又称滑轨、线性导轨、线性滑轨,用于直线往复运动场合,拥有比直线轴承更高的额定负载,同时可以承担一定的扭矩,可在高负载的情况下实现高精度的直线运动。 4.滚珠丝杠是将回转运动转化为直线运动,或将直线运动转化为回转运动的理想产品。 5.铝合金型材外形美观、设计合理、刚性好、性能可靠,是组合机床和自动线较理想的基础动力部件动态性能好,刚度高,热变形小,进给稳定性高,从而保证了加工状态下(负荷下)的实际精度。 直线模组主要是由滚珠丝杆支撑、铝合金型材滑台、直线导轨等组成的,加强了设备的工作能力。 滚珠丝杠由螺杆、螺母和滚珠组成。它的功能是将旋转运动转化成直线运动,这是滚珠螺丝的进一步延伸和发展,这项发展的重要意义就是将轴承从滚动动作变成滑动动作。由于具有很小的摩擦阻力,滚珠丝杠被广泛应用于各种工业设备和精密仪器。