直线模组由哪些部件组成?

直线模组在很多行业中都有着广泛的应用,它是一种能提供直线运动的动力机械。 直线模组主要有哪些部分组成? 1.伺服电机使滑台可以快速进退。利用滚珠丝杠和线轨获得较高的精度,可以用PLC控制,也可以直接利用机械手控制系统进行控制。运动速度、运动轨迹可以编程设置,实现各种运用需求。 2.滚珠丝杆支撑座选用的支撑座具有高刚性、高精度的超小型角接触球轴承,能获得稳定的回转性能。使用深沟球轴承的内部轴承中装入了适量的锂皂基润滑脂,用特殊密封垫圈进行密封,能直接安装,长期使用。 3.直线导轨又称滑轨、线性导轨、线性滑轨,用于直线往复运动场合,拥有比直线轴承更高的额定负载,同时可以承担一定的扭矩,可在高负载的情况下实现高精度的直线运动。 4.滚珠丝杠是将回转运动转化为直线运动,或将直线运动转化为回转运动的理想产品。 5.铝合金型材外形美观、设计合理、刚性好、性能可靠,是组合机床和自动线较理想的基础动力部件动态性能好,刚度高,热变形小,进给稳定性高,从而保证了加工状态下(负荷下)的实际精度。 直线模组主要是由滚珠丝杆支撑、铝合金型材滑台、直线导轨等组成的,加强了设备的工作能力。 滚珠丝杠由螺杆、螺母和滚珠组成。它的功能是将旋转运动转化成直线运动,这是滚珠螺丝的进一步延伸和发展,这项发展的重要意义就是将轴承从滚动动作变成滑动动作。由于具有很小的摩擦阻力,滚珠丝杠被广泛应用于各种工业设备和精密仪器。

联轴器在风机中的应用

为提高职工的主观能动性和自身的素质,保证生产工艺稳定在较高水平上运行。车间在焦结热工和冷凝大主要工序上开展岗位竞赛,拨专款。实施内部考核次分配。极大地调动了岗位操作积极性。焦结炉进口温度合格率长期保持在99.7以上。焦结矿质量合格率达到9275.热工大炉温度合格率完成99.3,上料温度合格率完成99.89;直管温度和热工燃烧室温度241合格率稳定在85和99以上。对提高冷凝效率降低残渣含锌起到重要作用。 ⑤偏差调整的特定步骤。 第步垂直方向上的角度误差通过垫片进行调整,调整时不会影响其它偏差3第步垂直方向上的同轴度偏差亦通过甩片进行调整,当垂直方向上同时存在角度偏差时,不能进行该同轴度偏差的调整31. 第步水平方向的角度调整此项调整应1述两步调整后进行,以避免受到影响3c,7尺平方向上的角度偏差水平方向上的同轴度偏差第步水平方向上的同轴度偏差当水平面上还存角度误差不能调整该轴度偏差。并应说每次调。整。+管是,减垫片。还是移动电机或抒紧螺栓,均要记录组千分读数。 ⑩在之上的点位置将千分置零将引风机轴与电机轴起旋转。,转动90.记皮两个千分对位置不变即可消除由轮缘或端面不规则造成的偏差为保证说服力,应多测几组腿,5点为0.15而。说明电机沾部高相对风机而,忍的角泛偏差为。15;电机所需调整的距离计算如下。先测允度千分探针的转直径价比轮毂直径稍小,假定乃=15,以及电机前后两个固定螺栓的距离假定将电机撬起并从电机尾部支脚上取出厚度为0.761的垫片,按4的顺序均匀地拧紧固定螺拎。 9,切步骤,重新检查难直方1上的扣度偏差,记录千分的读数,注意调整后电机轴可能高于或低于引风机轴,但这不会影响角度偏差的计算。如果该偏差符合要求,明校准的第步己经完成两轴在垂直方向上己经平行。 卟说明电机比引风机低总的角度偏差为0.2,电机所需调整的距离为同轴度1被电机的付个脚上加0.10,1厚的垫。然后按4的顺序均匀地拧紧固定螺栓。 步骤重新检查垂直方向上的同轴度偏差,记录千分的读数,如果该偏差符合要求,明校准的第步己经完成,两轴在垂直方向上己经平行同心。 ⑩平面上的角度偏差在点为扣!点为+0.说明电机在引风机的顺时针方让存正的角度偏差,总的偏是晴为0.20仙1按照,步骤中计算垂直方向角度偏差的方法,计算出水平方向的角度偏羞此时从水平面的角度偏差,5=电机脚需要摆动的距离5=760用千斤顶把点顶住,转动点的千斤顶,按3,箭头方向,动屯机。,动距离为1.1.然后按4的顺序均匀地抒紧固定螺栓。 照,骤,重新检查水平方向上的角度偏差,记录千分的读数,如果该偏差符合要求,水平方向上己平行。 水平方向上同轴度偏差在点为0.15,点为+0.15说明电机在方向上与引风机有偏差,总的同轴度偏差为0.30,电机,斤纶调整的距离为同轴度偏差的12,即。15每螺旋千斤顶放置在34中的,点处,同时转动千斤顶,按31方向移动电机,移动距离0.15,然后按4的顺序均匀地拧紧固定螺栓。 重新检查水平方向上的同轴度偏差,记录千分的读数,如果该偏差符合要求,明校准的第步己经完成,说明电机轴上下左右均己与引风机轴对齐。

机械手臂的相关知识普及

机械手臂是一种能按既定的程序或要求,自动完成物件(如材料、工件、零件或工具等)传送或操作作业的机械装置,它能部分地代替人的手工劳动。较高形式的机械手还能模拟人的手臂动作,完成较复杂的作业。机械手臂广泛应用于半导体制造、工业、医疗、军事、以及太空探索等领域。 机械手臂是目前在机械人技术领域中得到最广泛实际应用的自动化机械装置,在工业制造、医学治疗、娱乐服务、军事以及太空探索等领域都能见到它的身影。尽管它们的形态各有不同,但它们都有一个共同的特点,就是能够接受指令,精确地定位到三维(或二维)空间上的某一点进行作业。 机械手臂根据结构形式的不同分为多关节机械手臂,直角坐标系机械手臂,球坐标系机械手臂,极坐标机械手臂,柱坐标机械手臂等。 常见的六自由度机械手臂。他有X移动,Y移动,Z移动,X转动,Y转动,Z转动六个自由度组成。 水平多关节机械手臂一般有三个主自由度,Z1转动,Z2转动,Z移动。通过在执行终端加装X转动,Y转动可以到达空间内的任何坐标点。 直角坐标系机械手臂有三个主自由度。X移动,Y移动,Z移动组成,通过在执行终端加装X转动,Y转动,Z转动可以到达空间内的任何坐标点。 对于工业应用来说,又是并不需要机械手臂具有完整的六个自由度,而只需其中的一个或几个自由度。直角坐标系机械手臂可以由单轴机械手臂组合而成。单轴机械手臂作为一个组件在工业中应用广泛。 机械手臂是机械手的主要部分,它是撑手腕、手指和工件并使它们运动的机构。 手臂一般有3个运动:伸缩、旋转和升降。实现旋转、升降运动是由横臂和产柱去完成。手臂的基本作用是将手爪移动到所需位置和承受爪抓取工件的最大重量,以及手臂本身的重量等。 手臂由以下几部分组成: 1、运动元件:如油缸、气缸、齿条、凸轮等是驱动手臂运动的部件。 2、导向装置:是保证手臂的正确方面及承受由于工件的重量所产生的弯曲和扭转的力矩。 3、手臂:起着连接和承受外力的作用。手臂上的零部件,如油缸、导向杆、控制件等都安装在手臂上。 此外,根据机械手运动和工作的要求,如管路、冷却装置、行程定位装置和自动检测装置等,一般也都装在手臂上。所以手臂的结构、工作范围、承载能力和动作精度都直接影响机械手的工作性能。 手臂的结构:手臂的伸缩和升降运动一般采用直线油(气)缸驱动,或由电机通过丝杆、螺母来实现。手臂的回转运动在转角小于360°的情况下,通常采用摆动油(气)缸;转角大于360°的情况下,采用直线油缸通赤齿条、齿轮或链条、链轮来实现。手臂的直线运动、摆动、俯仰运动。 设计要求 1、手臂应承载能力大、刚性好、自重轻 手臂的刚性直接影响到手臂抓取工件时动作的平稳性、运动的速度和定位精度。如刚性差则会引起手臂在垂直平面内的弯曲变形和水平面内侧向扭转变形,手臂就要产生振动,或动作时工件卡死无法工作。为此,手臂一般都采用刚性较好的导向杆来加大手臂的刚度,各支承、连接件的刚性也要有一定的要求,以保证能承受所需要的驱动力。 2、手臂的运动速度要适当,惯性要小 机械手的运动速度一般是根据产品的生产节拍要求来决定的,但不宜盲目追求高速度。 手臂由静止状态达到正常的运动速度为启动,由常速减到停止不动为制动,速度的变化过程为速度特性曲线。 手臂自重轻,其启动和停止的平稳性就好。 3、手臂动作要灵活 手臂的结构要紧凑小巧,才能做手臂运动轻快、灵活。在运动臂上加装滚动轴承或采用滚珠导轨也能使手臂运动轻快、平稳。此外,对了悬臂式的机械手,还要考虑零件在手臂上布置,就是要计算手臂移动零件时的重量对回转、升降、支撑中心的偏重力矩。偏重力矩对手臂运动很不利,偏重力矩过大,会引起手臂的振动,在升降时还会发生一种沉头现象,还会影响运动的灵活性,严重时手臂与立柱会卡死。所以在设计手臂时要尽量使手臂重心通过回转中心,或离回转中心要尽量接近,以减少偏力矩。对于双臂同时操作的机械手,则应使两臂的布置尽量对称于中心,以达到平衡。 4、位置精度高 机械手要获得较高的位置精度,除采用先进的控制方法外,在结构上还注意以下几个问题: (1)机械手的刚度、偏重力矩、惯性力及缓冲效果都直接影响手臂的位置精度。 (2)加设定位装置和行程检测机构。 (3)合理选择机械手的坐标形式。直角坐标式机械手的位置精度较高,其结构和运动都比较简单、误差也小。而回转运动产生的误差是放大时的尺寸误差,当转角位置一定时,手臂伸出越长,其误差越大;关节式机械手因其结构复杂,手端的定位由各部关节相互转角来确定,其误差是积累误差,因而精度较差,其位置精度也更难保证。 5、通用性强,能适应多种作业;工艺性好,便于维修调整 以上这几项要求,有时往往相互矛盾,刚性好、载重大,结构往往粗大、导向杆也多,增加手臂自重;转动惯量增加,冲击力就大,位置精度就低。因此,在设计手臂时,须根据机械手抓取重量、自由度数、工作范围、运动速度及机械手的整体布局和工作条件等各种因素综合考虑,以达到动作准确、可靠、灵活、结构紧凑、刚度大、自重小,从而保证一定的位置精度和适应快速动作。此外,对于热加工的机械手,还要考虑热辐射,手臂要较长,以远离热源,并须装有冷却装置。对于粉尘作业的机械手还要添装防尘设施。

单轴机器人的结构、特点和优势

结构: 单轴机器人的总体为龙门式框架结构组成,按照加工工件生产工艺要求,可以将多台加工设备(加工中心或者数控设备)并成一个独立的自动化生产线,完成工件的自动化,批量化生产,能够很好的提高生产效率及产品质量。按照龙门跨度的长短,在两端立柱之间适当增加中间立柱。立柱位置一般跨度4米为宜。龙门式框架的布置,可以适当多添加机械手或其它加工设备组合在同一加工单元内来满足加工要求,提高生产效率。 优势: 1.运动部件直线运行,最大运行行程可达50米左右。 2.运行速度达到0.5米每秒,速度比机床运行快4-5倍。 3.加速度可以达到9米每秒。 4.重复定位精度高达正负0.02MM。完全能满足广大自动加工设备的定位精度要求。 5.立体龙门式架构空间,点地面积少,维护方便。 特点: 单轴机器人是结合了计算机,控制论,机构学,信息和传感技术,人工智能等多学科而结合的高新技术产品。是可以进行自动控制的,可以反复编程的,多功能的,多自由度的,多用途的操作设备。现在国内很多企业用人成本不断增加,用工慌,桁架式单轴工业机器人在生产制造中可以实现规模化生产,减少工人的体力劳动,提高产品质量有鲜明的优势,还可以在高温,有毒等恶劣的生产环境代替人工无法解决的工作。

单轴、多轴机械手安装遇到的问题及解决方法

直角坐标机械手臂在安装和运行过程过,有赖于正确的使用,方能保持最佳性能,延长机器使用寿命,避免由于安装不善导致的机器损坏或寿命缩短。单轴直线运动模组也称之为电动滑台,是自动化设备中必不可少的运动部件,通过单轴模组可以快速、方便地组合成各类样式的直角坐标机械手臂。 针对单轴、多轴机械手在安装和运行过程中,可能出现哪些问题及解决方法: 1.单轴机械手安装底面平面度不达标。 单轴机械手安装底面平面度过大,会导致电动滑台底面被强行锁附,导致滑台底面,直线导轨和滚珠丝杠发生强弯变形。轻则会使单轴机械手运行阻力加大,重则有可能是电动滑台无法运行,急剧缩短电动滑台寿命。 根据单轴机械手的精度等级,一般普通级对安装底面的平面度要求应小于0.05mm/m。对于精密级,安装底面的平面度应小于0.02mm/mm。 2.单轴机械手底部固定螺钉锁附顺序不对。 单轴机械手底部固定螺钉应遵循先中间,后两端,依次锁紧的原则。若先将两端锁死,会导致由于形变产生的拱起形变量无法消除,从而导致直线导轨不能顺畅运行,降低行走平行度和直线度精度。 3.单轴机械手电机轴和丝杠轴端不同心。 虽然联轴器能消除一定的偏心度,但如果单轴机械手丝杠轴端和电机轴的同心度跳动值超出联轴器的允许范围,则会加速联轴器的损坏,导致联轴器异响,或弹片发生断裂。应该尽量避免。 4.多轴龙门式组合机械手臂两边安装高度不平。 机械手臂采用龙门式安装时,如果两边的导轨高度不平,或者平行两滑台不平行,将会使电动滑台憋住,加速电动滑台的损坏。 5.单轴电动滑台同步带张紧过松或过紧。 电动滑台同步带张紧度要保持适中, 皮带张力过紧,会使同步轮和同步带张力过大,并产生异响。皮带张力过松,会使传动过程中产生间隙,降低精度,严重时会产生跳齿。同步带张紧程度一般通过张紧力和挠度来确定,测量方法为:使用推力计下压皮带中点垂直方向,施加一定大小的安装力时,测量所产生的挠度值。 6.单轴电动滑台同步带安装未对齐。 同步带型传动的电动滑台,或者马达侧面安装型电动滑台,应该使同步轮保持平齐,否则,会导致皮带跑偏,进而皮带边沿和同步带挡边发生摩擦,同步带短时间内就会损坏和断裂。 7.单轴电动滑台感应开关因变形碰撞到感应器。 电动滑台感应开关感应片因变形碰撞到光电开关导致光电开关损坏。 对策:在通电和滑动滑块之前,应先检查光电开关你能正常通过光电开关。 8.机械手臂(电动滑台)悬臂轴行程过长,悬出长度过大。 机械手臂的悬臂长度过大,会造成导轨的容许力矩过载,在不同的加减速度下,收束时间会发生变动。收束时产生的振动最终被电动滑台吸收,长时间振动会造成导轨寿命缩短。 9.机械手臂/电动滑台负载超出使用范围。 机械手臂选型时,除了参照选型手册的可搬运负载数据,还应校核动态容许力矩,加减速变动,以及悬臂长度等造成的影响,并预留足够的安全系数。 10.机械手臂感应开关接线错误或过压烧坏。 电动滑台感应开关一般采用光电开关。光电开关正负极反接会导致光电开关损坏。光电开关不能与电机驱动器或其他感性负载共用电源,否则,电机或感性负载产生的反向电动势会使电压发生大幅波动,从而将光电开关烧坏。 11.机械手臂/电动滑台安装时强行敲打。 机械手臂属于精密部件,不可强行敲打和强行锁附,不当安装,会使滑台变形,精度受损, 寿命缩短。 12.电动滑台钢带被人为按压变形。 对于全封闭型电动滑台,柔性钢带不可重压,人为压弯会使钢带产生变形,影响防尘效果并加速损坏。

滚珠丝杠与直线电机通过几个性能相比较

1.能耗比较: 直线电机在提供同样转矩时的能耗是“旋转伺服电机+滚珠丝杠”一倍以上,“旋转伺服电机+滚珠丝杠”属于节能、增力型传动部件,直线电机可靠性受控制系统稳定性影响,对周边的影响很大必须采取有效隔磁与防护措施,隔断强磁场对滚动导轨的影响和对铁屑磁尘的吸附。 2.应用比较: 事实上,直线电机和“旋转伺服电机+滚珠丝杠”两种驱动方式尽管各有优势,但也有自身的软肋。两者在数控机床上都有各自最佳的适用范围。 3.速度比较: 速度方面直线电机具有相当大的优势,直线电机速度达到300m/min,加速度达到10g;滚珠丝杠速度为120m/min,加速度为1.5g。从速度上和加速度的对比上,直线电机具有相当大的优势,而且直线电机在成功解决发热问题后速度还会进一步提高,而“旋转伺服电机+滚珠丝杠”在速度上却受到限制很难再提高较多。从动态响应上因为运动惯量和间隙以及机构复杂性等问题直线电机也占有绝对的优势。 速度控制上直线电机因其响应快,调速范围更宽,可以实现启动瞬间达到最高转速,高速运行时又能迅速停止。调速范围可达到1:10000。

直线电机与滚珠丝杆性能有哪些不同?

1.精度比较: 精度方面直线电机因传动机构简单减少了插补滞后的问题,定位精度、重现精度、绝对精度,通过位置检测反馈控制都会较“旋转伺服电机+滚珠丝杠”高,且容易实现。 直线电机定位精度可达0.1μm。“旋转伺服电机+滚珠丝杠”最高达到2~5μm,且要求CNC-伺服电机-无隙连轴器-止推轴承-冷却系统-高精度滚动导轨-螺母座-工作台闭环整个系统的传动部分要轻量化,光栅精度要高。 若想达到较高平稳性,“旋转伺服电机+滚珠丝杠”要采取双轴驱动,直线电机是高发热部件,需采取强冷措施,要达到相同目的,直线电机则要付出更大的代价。 2.价格比较: 价格方面直线电机的价格要高出很多,这也是限制直线电机被更广泛应用的原因。 3.能耗比较: 直线电机在提供同样转矩时的能耗是“旋转伺服电机+滚珠丝杠”一倍以上,“旋转伺服电机+滚珠丝杠”属于节能、增力型传动部件,直线电机可靠性受控制系统稳定性影响,对周边的影响很大必须采取有效隔磁与防护措施,隔断强磁场对滚动导轨的影响和对铁屑磁尘的吸附。 4.速度比较: 速度方面直线电机具有相当大的优势,直线电机速度达到300m/min,加速度达到10g;滚珠丝杠速度为120m/min,加速度为1.5g。从速度上和加速度的对比上,直线电机具有相当大的优势,而且直线电机在成功解决发热问题后速度还会进一步提高,而“旋转伺服电机+滚珠丝杠”在速度上却受到限制很难再提高较多。从动态响应上因为运动惯量和间隙以及机构复杂性等问题直线电机也占有绝对的优势。 速度控制上直线电机因其响应快,调速范围更宽,可以实现启动瞬间达到最高转速,高速运行时又能迅速停止。调速范围可达到1:10000。 直线电机和“旋转伺服电机+滚珠丝杠”两种驱动方式尽管各有优势,但也有自身的软肋。两者在数控机床上都有各自最佳的适用范围。 直线电机驱动的优势: (1)高速、超高速、高加速度和生产批量大、要求定位的运动多、速度大小和方向频繁变化的场合。例如汽车产业和IT产业的生产线,精密、复杂模具的制造。 (2)大型、超长行程高速加工中心,航空航天制造业中轻合金、薄壁、金属去除率大的整体构件“镂空”加工。例如美国CINCI ATI公司的“Hyper Mach”加工中心(46m);日本MAZAK公司的“HYPERSONIC 1400L超高速加工中心。 (3) 要求高动态特性、低速和高速时的随动性、高灵敏的动态精密定位。例如,以Sodick为代表的新一代高性能CNC电加工机床、CNC超精密机床、新一代CPC曲轴磨床、凸轮磨床、CNC非圆车床等。 (4)轻载、快速特种CNC装备。例如德国DMG的“DML80 Fine Cutting”激光雕刻、打孔机,比利时LVD公司的“AXEL3015S”激光切割机,MAZAK的“Hyper Cear510”高速激光加工机等。

直线导轨的性能特点

1.适应高速运动且大幅降低驱动功率。采用滚动直线导轨的机床由于摩擦阻力小,可使所需的动力源及动力传递机构小型化,使驱动扭矩大大减少,使机床所需电力降低80%,节能效果明显。可实现机床的高速运动,提高机床的工作效率20~30%。 2.承载能力强。滚动直线导轨副具有较好的承载性能,可以承受不同方向的力和力矩载荷,如承受上下左右方向的力,以及颠簸力矩、摇动力矩和摆动力矩。因此,具有很好的载荷适应性。在设计制造中加以适当的预加载荷可以增加阻尼,以提高抗振性,同时可以消除高频振动现象。 而滑动导轨在平行接触面方向可承受的侧向负荷较小,易造成机床运行精度不良。 3.组装容易并具互换性。传统的滑动导轨必须对导轨面进行刮研,既费事又费时,且一旦机床精度不良,必须再刮研一次。滚动导轨具有互换性,只要更换滑块或导轨或整个滚动导轨副,机床即可重新获得高精度。 4.定位精度高。滚动直线导轨的运动借助钢球滚动实现,导轨副摩擦阻力小,动静摩擦阻力差值小,低速时不易产生爬行。重复定位精度高,适合作频繁启动或换向的运动部件。可将机床定位精度设定到超微米级。同时根据需要,适当增加预载荷,确保钢球不发生滑动,实现平稳运动,减小了运动的冲击和振动。 5.磨损小。对于滑动导轨面的流体润滑,由于油膜的浮动,产生的运动精度误差是无法避免的。在绝大多数情况下,流体润滑只限于边界区域,由金属接触而产生的直接摩擦是无法避免的,在这种摩擦中,大量的能量以摩擦损耗被浪费掉了。与之相反,滚动接触由于摩擦耗能小,滚动面的摩擦损耗也相应减少,故能使滚动直线导轨系统长期处于高精度状态。同时,由于使用润滑油也很少,这使得在机床的润滑系统设计及使用维护方面都变的非常容易。

工业机械手的组成及机能有哪些?

工业机械手系统组成 工业机械手主要由执行机构、驱动机构、和控制系统三大部分组成。 (1)执行机构 机械手的执行机构可以分为手部、手臂和躯干等三部分。手部一般安装在手臂的前端其构造是模仿人的手指。手臂可以分为无关节臂和有关节臂,其主要作用是引导手指准确地抓住工件,并运送到所需要的位置上。躯干是安装手臂、动力源和执行机构的支架。 (2)驱动机构 机械手的驱动机构主要有四种:液压驱动、气压驱动、电气驱动和机械驱动。其中以液压、气动用的最多,电动和机械用的较少。 (3)控制系统 机械手控制的要素包括工作顺序、到达位置、动作时间、运动时间、运动速度和加减速度等。机械手的控制可以分为点位控制、连续轨迹控制、力控制和智能控制方式等。 工业机械手的机能 机械手的机能就是指它具有完成人们预定作业所需要的能力。运动机能是指机械手完成预定工艺操作应具有的运动自由度,以及所能到达的活动范围。同时还要求机械手具有对机械手的抓放、定向、工艺操作和行走的能力等。通用机械手应根据作业的要求,设计成具有完善的运动机能,即它的动作要接近于人手操作时的某些运动机能,以适应广大作业范围的需要。专用机械手则仅赋予部分的运动机能,可按照工艺操作的需要来确定。机械手又应具有一定的物理机能如载荷能力、运动速度、持续工作能力以及工作的准确性和稳定性等性能。此还应具有耐热、耐腐蚀的能力,以适应工艺操作的需要和具体的工作环境。机械手的另一个要机能就是控制机能。对专用机械手而言,是指能自动完成作业程序的能力。但对于一般的通用机械手其控制性能是指它具有自动地、或被动地变换程序的能力,即按照指令能自动地、再现地完成规定的动作程序的机能。 工业机械手作用 机械工业中,应用机械手的意义: ⑴可提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 ⑵可改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。 ⑶可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。

直线导轨的六不要

1.请注意防止衣物、切屑等异物的进入。否则,可能导致钢球循环部件的破损、功能损坏。 2.要在冷却剂可能进入LM滑块内部的环境下使用LM系统时,由于某些种类的冷却剂会影响产品性能, 3.请避免在超过80℃的条件下使用。要超过80℃使用时, 4.垃圾、锯粉等异物附着时,请在清洗后重新封入润滑剂。有关可用清洁剂的种类, 5.要在逆向吊装状态下使用LM滚动导轨时,请采取对应措施,如添加防止落下的安全机构等。否则,可能引起导致端板破损,使钢球脱落,LM滑块从LM轨道上脱落掉下等事故。   6.要在经常产生振动的场所、无尘室、真空、低温或高温等特殊环境下使用时。

机器人的原理详解

机器人的定义范围很广,大到工厂服务的工业机器人,小到居家打扫机器人。按照目前最宽泛的定义,如果某样东西被许多人认为是机器人,那么它就是机器人。许多机器人专家(制造机器人的人)使用的是一种更为精确的定义。他们规定,机器人应具有可重新编程的大脑(一台计算机),用来移动身体。 根据这一定义,机器人与其他可移动的机器(如汽车)的不同之处在于它们的计算机要素。许多新型汽车都有一台车载计算机,但只是用它来做微小的调整。驾驶员通过各种机械装置直接控制车辆的大多数部件。而机器人在物理特性方面与普通的计算机不同,它们各自连接着一个身体,而普通的计算机则不然。 大多数机器人确实拥有一些共同的特性 首先,几乎所有机器人都有一个可以移动的身体。有些拥有的只是机动化的轮子,而有些则拥有大量可移动的部件,这些部件一般是由金属或塑料制成的。与人体骨骼类似,这些独立的部件是用关节连接起来的。 机器人的轮与轴是用某种传动装置连接起来的。有些机器人使用马达和螺线管作为传动装置;另一些则使用液压系统;还有一些使用气动系统(由压缩气体驱动的系统)。机器人可以使用上述任何类型的传动装置。 其次,机器人需要一个能量源来驱动这些传动装置。大多数机器人会使用电池或墙上的电源插座来供电。此外,液压机器人还需要一个泵来为液体加压,而气动机器人则需要气体压缩机或压缩气罐。 所有传动装置都通过导线与一块电路相连。该电路直接为电动马达和螺线圈供电,并操纵电子阀门来启动液压系统。阀门可以控制承压流体在机器内流动的路径。比如说,如果机器人要移动一只由液压驱动的腿,它的控制器会打开一只阀门,这只阀门由液压泵通向腿上的活塞筒。承压流体将推动活塞,使腿部向前旋转。通常,机器人使用可提供双向推力的活塞,以使部件能向两个方向活动。 机器人的计算机可以控制与电路相连的所有部件。为了使机器人动起来,计算机会打开所有需要的马达和阀门。大多数机器人是可重新编程的。如果要改变某部机器人的行为,您只需将一个新的程序写入它的计算机即可。 英语里“机器人”(Robot)这个术语来自于捷克语单词robota,通常译作“强制劳动者”。用它来描述大多数机器人是十分贴切的。世界上的机器人大多用来从事繁重的重复性制造工作。它们负责那些对人类来说非常困难、危险或枯燥的任务。 最常见的制造类机器人是机器臂。一部典型的机器臂由七个金属部件构成,它们是用六个关节接起来的。计算机将旋转与每个关节分别相连的步进式马达,以便控制机器人(某些大型机器臂使用液压或气动系统)。与普通马达不同,步进式马达会以增量方式精确移动。这使计算机可以精确地移动机器臂,使机器臂不断重复完全相同的动作。机器人利用运动传感器来确保自己完全按正确的量移动。 这种带有六个关节的工业机器人与人类的手臂极为相似,它具有相当于肩膀、肘部和腕部的部位。它的“肩膀”通常安装在一个固定的基座结构(而不是移动的身体)上。这种类型的机器人有六个自由度,也就是说,它能向六个不同的方向转动。与之相比,人的手臂有七个自由度。 大多数工业机器人在汽车装配线上工作,负责组装汽车。在进行大量的此类工作时,机器人的效率比人类高得多,因为它们非常精确。无论它们已经工作了多少小时,它们仍能在相同的位置钻孔,用相同的力度拧螺钉。制造类机器人在计算机产业中也发挥着十分重要的作用。它们无比精确的巧手可以将一块极小的微型芯片组装起来。 机器臂的制造和编程难度相对较低,因为它们只在一个有限的区域内工作。如果您要把机器人送到广阔的外部世界,事情就变得有些复杂了。 首要的难题是为机器人提供一个可行的运动系统。如果机器人只需要在平地上移动,轮子或轨道往往是最好的选择。如果轮子和轨道足够宽,它们还适用于较为崎岖的地形。但是机器人的设计者往往希望使用腿状结构,因为它们的适应性更强。制造有腿的机器人还有助于使研究人员了解自然运动学的知识,这在生物研究领域是有益的实践。 机器人的腿通常是在液压或气动活塞的驱动下前后移动的。各个活塞连接在不同的腿部部件上,就像不同骨骼上附着的肌肉。若要使所有这些活塞都能以正确的方式协同工作,这无疑是一个难题。在婴儿阶段,人的大脑必须弄清哪些肌肉需要同时收缩才能使得在直立行走时不致摔倒。同理,机器人的设计师必须弄清与行走有关的正确活塞运动组合,并将这一信息编入机器人的计算机中。许多移动型机器人都有一个内置平衡系统(如一组陀螺仪),该系统会告诉计算机何时需要校正机器人的动作。 自动机器人可以自主行动,无需依赖于任何控制人员。其基本原理是对机器人进行编程,使之能以某种方式对外界刺激做出反应。极其简单的碰撞反应机器人可以很好地诠释这一原理。 这种机器人有一个用来检查障碍物的碰撞传感器。当您启动机器人后,它大体上是沿一条直线曲折行进的。当它碰到障碍物时,冲击力会作用在它的碰撞传感器上。每次发生碰撞时,机器人的程序会指示它后退,再向右转,然后继续前进。按照这种方法,机器人只要遇到障碍物就会改变它的方向。 高级机器人会以更精巧的方式运用这一原理。机器人专家们将开发新的程序和传感系统,以便制造出智能程度更高、感知能力更强的机器人。如今的机器人可以在各种环境中大展身手。 较为简单的移动型机器人使用红外或超声波传感器来感知障碍物。这些传感器的工作方式类似于动物的回声定位系统:机器人发出一个声音信号(或一束红外光线),并检测信号的反射情况。机器人会根据信号反射所用的时间计算出它与障碍物之间的距离。 迄今为止的大多数机器人更像是厨房用具。机器人专家们将它们制造出来以专门用于特定用途。但是它们对完全不同的应用场景的适应能力并不是很好。 这种情况正在改变。一家名叫Evolution Robotics的公司开创了适应型机器人软硬件领域的先河。该公司希望凭借一款易用的“机器人开发人员工具包”开拓出自己的利基市场。 这个工具包有一个开放式软件平台,专门提供各种常用的机器人功能。例如,机器人学家可以很容易地将跟踪目标、听从语音指令和绕过障碍物的能力赋予它们的作品。从技术角度来看,这些功能并不具有革命性的意义,但不同寻常的是,它们集成在一个简单的软件包中。 这个工具包还附带了一些常见的机器人硬件,它们可以很容易地与软件相结合。标准工具包提供了一些红外传感器、马达、一部麦克风和一台摄像机。机器人专家可以利用一套加强型安装组件将所有这些部件组装起来,这套组件包括一些铝制身体部件和结实耐用的轮子。 人工智能(AI)无疑是机器人学中最令人兴奋的领域,无疑也是最有争议的:所有人都认为,机器人可以在装配线上工作,但对于它是否可以具有智能则存在分歧。 就像“机器人”这个术语本身一样,您同样很难对“人工智能”进行定义。终极的人工智能是对人类思维过程的再现,即一部具有人类智能的人造机器。人工智能包括学习任何知识的能力、推理能力、语言能力和形成自己的观点的能力。 人工智能的真正难题在于理解自然智能的工作原理。开发人工智能与制造人造心脏不同,科学家手中并没有一个简单而具体的模型可供参考。我们知道,大脑中含有上百亿个神经元,我们的思考和学习是通过在不同的神经元之间建立电子连接来完成的。但是我们并不知道这些连接如何实现高级的推理能力,甚至对低层次操作的实现原理也并不知情。大脑神经网络似乎复杂得不可理解。 因此,人工智能在很大程度上还只是理论。科学家们针对人类学习和思考的原理提出假说,然后利用机器人来实验他们的想法。 无论如何,机器人都会在我们未来的日常生活中扮演重要的角色。

直线电机结构及工作原理

进入新时期以来,我国在各生产业技术方面也投入了大量的精力和物力,采用先进的科学技术,利用直线电机对电能的直接转换,打破了传统的中间传动机构,同时也有效的降低了电力系统的损坏几率,为现代直线电机指引了发展方向,实现关键控制技术的信息化管理,进一步提升直线电机在各生产领域中的重要性。 直线电机的结构 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初级和次级之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理 设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应电动机。初级做得很长,延伸到运动 所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动。通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设引起涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将按费来明法则产生连续的推力F。 此外,直线电机的类型复杂,结构方式也较为多样化,可分为扁平型结构、圆筒型结构和弧形结构等,应用范围最广的就属扁平型结构电机,其结构方式又可分成单边型结构和双边型结构,可以有效的增强电机法向力,提升电机速度,同时也对电机的结构和安装带来一定的影响。 直线电机的特点 1. 高速响应。由于系统中直接取消了一些响应时间常数较大的,如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 2. 定位精度高。直线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。 3. 传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 4. 速度快、加减速过程短。 5. 行程长度不受限制。在导轨上通过串联直线电机,就可以无限延长其行程长度。 6. 动安静、噪音低。由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 7. 效率高。由于无中间传动环节,消除了机械摩擦时的能量损耗。 直线电机的应用 直线电机主要应用于三个方面: 1.应用于自动控制系统,这类应用场合比较多; 2.作为长期连续运行的驱动电机; 3.应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 U槽无刷直线电机可以直接驱动,无需将转动转为线性运动,机械结构简单可靠。电机运行超平稳,无齿槽效应,动态响应速度极快,惯量小,加速度可达20G,速度达到10-30m/s,低速1μm/s时运动平滑,刚性高,结构紧凑,可选配直线编码器做高精度位置控制,其位置精度取决于所选编码器。 定子轨道可以按需要连接,因而理论上电机长度不限。电机动子与定子不接触运动,没有采用普通丝杆滚珠和皮带等传动的磨损、卡死、背隙问题,因此我们的直线电机可以达到免维护长期工作。 此类直线电机特别适用于:机器人、致动器、直线平台、光学光纤排列定位、精密机床、半导体制造、视觉系统、电子元件接插、工厂自动化等对运动系统的速度和精度同时要求较高的应用场合。

直线模组的基础知识

在直线模组中有很多的参数,那么这些参数有什么用呢?而且很多的参数大部分人都看不懂,今天就给大家介绍一下直线模组中的一些 基础的知识,同时还解释一些基本数据的作用比如:直线模组的最大载荷,寿命,基本载荷,额定载荷,等这些都是基础的知识,也是都必 须掌握的,因为在采购直线模组的时候这些数据都非常的重要。 基础的知识,同时还解释一些基本数据的作用比如:直线模组的最大载荷,寿命,基本载荷,额定载荷,等这些都是基础的知识,也是都必 须掌握的,因为在采购直线模组的时候这些数据都非常的重要。 直线模组 直线模组容许静力矩:方向与大小一定的情况下的静力矩,在承担最大力的受力面上,滚动面和滚动体形变为滚动体半径的0.0002倍。 直线模组 额定载荷:在工作中,不影响机件工作的载荷量,通常情况下都会在不同型号下的载荷表中。这是重要参数之一。 直线模组 寿命:直线模组导轨受到滚动体或者其他物体的作用力,使得表面脱落影响精度。脱落一般是由材料的滚动疲劳引起。直线模组导轨的不恰当使用、摩擦的加剧、腐蚀、生锈都会降低直线导轨的使用寿命。 直线模组 导轨具有两种类型的基本额定载荷:一种是计算基本寿命的(C);一种是定义静态状态下的最大载荷量的(CO)。 直线模组 最大载荷(CO):直线模组导轨如果负载了超过最大载荷量的物体,与滚动物体接触时,两者会发证不可逆转的形变。发生形变会引起直线导轨的运动不平稳,严重影响精度。 直线模组 基本额定载荷(C):指的是相同条件下的同一批导轨运行时,L为50km。在方向大小不变的情况下,直线模组导轨负载可以完成这一运动的最大的量。

直线电机的优点和缺点有哪些?

直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,世界许多国家都在研究、发展和应用直线电机,使得直线电机的应用领域越来越广。 直线电机可直接驱动负载作直线运动,无需回转式电机在转换成直线运动时所需的一套转换机构,直线电机也可直接驱动盘式机械作低速旋转运动而无需齿轮变换装置,相较于传统的旋转电机,直线电机有以下优势: 1.结构简单 由于直线电机不需要把旋转运动变成直线运动的附加装置,因而使得系统本身的结构大为简化,重量和体积大大地下降。 2.高精度 在需要直线运动的地方,直线电机可以实现直接传动,因而可以消除中间环节所带来的各种定位误差,故定位精度、重复精度,通过位置检测反馈控制都会较“旋转伺服电机滚珠丝杠”高,且容易实现。直线电机定位精度可达±2μm,甚至更高。而“旋转伺服电机滚珠丝杠”最高只能达到10μm。 3.高速度 直线电机在速度方面具有相当大的优势,直线电机速度达到5m/s时,加速度达到10g;而滚珠丝杠速度为2m/s时,加速度为仅为1.5g。从速度上和加速度的对比上,直线电机具有相当大的优势,而且直线电机在成功解决发热问题后速度还会进一步提高,而“旋转伺服电机滚珠丝杠”在速度上却受到限制很难再提高较多。 4.安全可靠、寿命长 直线电机可以实现无接触传递力,机械摩擦损耗几乎为零,所以故障少,免维修,因而工作安全可靠、寿命长。滚珠丝杠则无法在高速往复运动中保证精度,因高速摩擦,会造成丝杠螺母的磨损,影响运动的精度要求。对高精度的需求场合无法满足。 5.适应性强 直线电机的线圈可以用环氧树脂封装成整体,具有较好的防腐、防潮,便于在潮湿、粉尘和有害气体的环境中使用,而且可以设计成多种结构形式满足不同情况的需求。 6.运动噪声低 直线电机驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足缺点,使机床的性能大大提高。其他应用行业也得到广泛的应用。 直线电机的缺点: 1.直线电机的耗电量大 尤其在进行高荷载、高加速度的运动时,机床瞬间电流对车间的供电系统带来沉重负荷。 2.发热量大 固定在工作台底部的直线电机动子是高发热部件,安装位置不利于自然散热,对机床的恒温控制造成很大挑战。 随着高速加工技术的迅速发展,对传动及控制系统的要求越来越高,使直线电机驱动技术的研究力度在逐步加大。现在直线电机的许多缺点已经被克服,直线电机的动力性能也更加的卓越。直线驱动技术的研究既是技术向更高更快发展的趋势,同时也更能满足市场需要,带来更大的经济效益,成为未来发展的必然趋势。

滚珠丝杆的安装方式有哪些?

伺服或步进电机连接滚珠丝杆,这在自动化机器里面是常见的一种结构,运动方式是将圆周转动变为直线运动。一般CNC拖板和一些精密直工作台大都是由伺服或步进电机驱动。但是这个简单的驱动,机构非常简单,主要部件为:电机、丝杆、丝杆锁紧螺母轴承座、轴承等等。但是一般丝杆均为往复式工作,要求精度非常高,有的重复精度高达0.001mm。 高精度的机构,同样要有合理的结构设计,我在这里分享一下本人的一部分经验。 一个垂直高速往复动作的钻主轴拖板,积算式运动方式。要求深度精度为0.005mm。 零件选用:P4级2504滚珠丝杆、7003C/DB角接触轴承、弹性连轴器、步进电机。 关键的这里有一个超级贵的零件——7003C/DB角接触轴承。本轴承尺寸17*35*20(单个为10),成对安装,价格为800元1对。 背靠背角接触轴承能够承受来自二个轴向方向的力,同时能够承受高速旋转和一定的径向力,因此在滚珠丝杆上是很常见一种轴承。角接触轴承的安装方式是很讲究的,不同的安装方向,所承受的力和刚性也不一样的。因此这在设计选型和安装时要特别注意。 关于角接触轴承的安装和注意事项,可以上网查找一下轴承厂家的资料。 下图是基本结构: 7003C/DB角接触轴承是可以调的,精度可以达到0.001mm.精度等级大于P4级。 背靠背安装方式,丝杆的另一端为悬空,如果要另一端装轴承,那么就应该安装7003CT的轴承,CT尾号表示为串联装。串联装轴承只能承受一个方向的力。 上述的机器为钻孔机。垂直下降,钻不锈钢,加工精度深度要求为0.01,而本机的实际精度为0.005。丝杆行程100mm,步进电机速度400转左右。对于精密机器来说,精度的保证是多方面的,不能仅靠某一样来保证。丝杆进给的机器一般来说保证精度的地方有: 1、丝杆 2、导轨 3、安装方式 4、其它机械方面 5、控制程序。 以上缺一不可。

六轴工业机器人的控制方式及特点有哪些?

6轴工业机器人的特点主要有以下几方面: (1)可编程:6轴工业机器人最大特点是柔性启动化,柔性制造系统中的一个重要组成部分。工业机器人可随其工作环境变化以及加工件的变化进行再编程,适合于小批量多品种具有均衡高效率的柔性制造生产线的应用。 (2)拟人化:6轴工业机器人结合机器人与人的特点。在6轴工业机器人的结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。其传感器提高了工业机器人对周围环境的自适应能力。 (3)通用性:一般6轴工业机器人在执行不同的作业任务时具有较好的通用性。当然也有专用的工业机器人。 (4)机电一体化:6轴工业机器人是机械学和微电子学的结合-机电一体化技术。工业机器人具有各种传感器可以获取外部环境信息,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都是微电子技术的应用,特别是计算机技术的应用密切相关。 六轴关节工业机器人的研发设计及制造已经有好几十年的历史了,整个工业机器人的研发制造体系较为完善,各研发厂家在相互竞争中可以相互模仿、改善、不断推陈出新。博立斯多年来坚持投入研发、生产各类自动化设备,其中包括:数控车床机械手、上下料机械手、机床机械手、冲压机械手、6轴工业机器人、4轴工业机械手、多轴工业机器人等。多年来不断推陈出新,研发生产的自动化设备帮助许多企业解决了生产难题,备受企业的喜爱。 业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。 6轴工业机器人的全部控制由一台微型计算机完成。另一种是分散(级)式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。根据作业任务要求的不同,机器人的控制方式又可分为点位控制、连续轨迹控制和力(力矩)控制。

直线模组的主要配件有哪些?

直线模组是一种直线传动装置,其应用广泛实用性强,一直备受工业行业所青睐。随着我国工业的发展之迅速,直线模组的需求量也在不断的日益增加。 滚珠丝杆 滚珠丝杠是直线模组上最常使用的传动元件,其主要功能是将旋转运动转换成线性运动,或将扭矩转换成轴向反复作用力,同时兼具高精度、可逆性和高效率的特点。 同步带 同步带是直线模组上最常使用的传动元件,同步带传动是由一根内周表面设有等间距齿形的环行带及具有相应吻合的轮所组成。它综合了带传动、链传动和齿轮传动各自的优点。转动时,通过带齿与轮的齿槽相啮合来传递动力。 直线导轨 直线导轨又称线轨、滑轨、线性导轨、线性滑轨,用于直线往复运动场合,且可以承担一定的扭矩,可在高负载的情况下实现高精度的直线运动。在大陆称直线导轨,台湾一般称线性导轨,线性滑轨。 联轴器 扭转刚性高,能准确控制轴的旋转,可进行高精度控制。采用摩擦结接合进行传递,没有间隙,最合适超精密控制。不锈钢膜片能补偿径向,角向、轴向偏差。顺时针与逆时针回转特性完全相同。夹紧方式固定。

手动滑台模组的优势特点

手动滑台模组主要应用在工装夹取、定位、自动化工作站、移栽、半导体设备以及机械内部XYZ轴工作平台、点胶、锁螺丝、视觉检测、量测设备等高速高精度等场所。 1.结构与特长:滑动台和基座采用A6063S-T5铝合金材质、高刚性、高精度、价格低、体积小、重量轻、铝合金结构、模组化设计、滑动台和底座经过阳极处后装入直线导轨,基座与滑动台搭配,实现了高刚性和负载容量。对负载负荷的变位量小,用于搭载的 质量或外部负载变动的用途也能依然保持高稳定性。 2.选择多元化:可根据客户的行业来选配:塑胶手轮、折叠型手轮和铝合金手轮。可通过手轮加装角度尺、位置显示器、转数计数器或重力指示器。通过手轮和单头、多头或左右对开的梯形牙丝杆传动。滑台与底座框架可搭配指示尺和指示板来來检测工件精度。 3.定位精度高:采用滚动结构,摩擦小,定位精度高,可长期使用。由手动检测平台标准位置按一定方向依次进行定位,然后在各自的位置上,根据标准位置,测定实际移动距离和应移动距离之间的差。反复测试7次,然后求它们的平均值。测试几乎包括整个移动距离,机型不同时,则应按照各机型规定的测试间隔进行测试,将由各自位置得出的平均值最大值作为测定值。 4.免维护保养:滑块,直线导轨部位为标准件。能够在通常的运行条件下,使用5年或运行10000km而不用维护保养。若能按照规定方法补充润滑脂,则能使用寿命更长。 既然滑台模组的优势特点如此明显,且应用广泛,在很多场合都适用。

如何保持滚珠丝杆的精度?

如何保持滚珠丝杆的精度 滚珠丝杆通常用于需要精密定位的场合。高的机械效率、低的传动扭矩和轴向游隙几乎为零, 使得滚珠丝杆成为刀具定位和飞机副翼驱动这类应用中的重要装置。然而, 阻力和由连续工作产生的热量可能引起很大的摩擦力和定位误差。 在滚珠丝杆里增加摩擦的设计因素也增加扭矩, 并且反过来影响定位精度。滚珠被压紧在滚珠丝杆螺母和丝杆轴之间时, 产生的楔效应是一个潜在的摩擦源。在正转的时候, 滚珠通常对着螺母挤压; 反转时,滚珠对着丝杆轴挤压。由于滑动摩擦系数比滚动摩擦系数大得多( 没动0.1~0.3;滚动0.001~0.003) ,楔效应大大增加了扭矩。 当滚珠丝杆轴在固定的角度内振动时, 挤压引起的扭矩特别麻烦。这种运动会引起振动扭矩, 既使用极精密的零件也很难完全消除。然而, 通过采用歌德式拱形而不采用圆弧形的滚珠沟槽或通过降低滚珠丝杆的刚度, 可以把这种扭矩减到最小量。歌德式拱形具有较深的流通性较好的V 形截面。 当两个滚珠丝杠螺母一起使用时, 通常用垫片隔开, 预紧力由垫片厚度确定。通过用蝶形弹簧代替实心垫片, 可以减小滚珠丝杆的扭矩, 这种弹簧允许有轴向变形从而减少了挤压。另一个主要的阻力源, 即相邻滚珠间的摩擦力, 可以通过拿掉几个滚珠或用隔离滚珠( 即有间隙的滚珠) 代替其中某些滚珠的方法来减少。采用这些方法, 摩擦产生的扭矩最多可减少30%。在降低滚珠及其滚道之间的摩擦力方面,同样的方法也是有效的。 为了最大限度地减少摩擦力, 隔离滚珠和承载滚珠应该相互交替。但是, 某些负载和刚度要求可能需要每三个承载滚珠用一个隔离滚珠。直径比承载滚珠稍小的隔离滚珠起惰轮的作用, 他们沿和承载滚珠相反的方向旋转, 并且减少接触摩擦。采用隔离滚珠或减少承载滚珠数目的一个不利的后果是降低了滚珠丝杆的承载能力, 这必须通过减少工作负载或增大滚珠丝杆尺寸来补偿。润滑引起的阻力也会增大摩擦扭矩, 尤其是在高速时, 大多数滚珠丝杆是在远低于5米/分的速度下使用。然而, 现代机床要求的速度大于10米/分, 有些系统应用的速度高达30米/分。产生最小阻力的润滑剂类型由滚珠丝杆轴向旋转速度确定。一般说来, 转速在500转/分以下或移动速度为3米/分时,用油脂润滑最好。在这种较低的速度下主要是边界润滑。转速超过500转/分, 主要是油体薄膜润滑, 油是最好的润滑剂。 热膨胀引起的定位精度降低不仅是由滚珠运动的摩擦热造成的, 而且也是由诸如液压流体、电动机、齿轮箱之类因素的机械运转热所造成的。如果在导轨或床身上产生了变形, 即使能够防止滚珠丝杆的温升, 也不可能获得高的精度。在分析精度的时候, 来自所有这样的热源的热都必须加以考虑。 在计算由滚珠丝杆本身产生的热量时, 高的工作负载是一个最大的潜在原因。通常, 工作负载大约是滚珠丝杆顶紧力的3 倍。更大的负载必须通过增大所用的滚珠丝杆装置的尺寸或通过更大的润滑剂冷却能力来补偿。补偿热膨胀的一种方法是对滚珠丝杆施加一种预紧力。这是通过把丝杆轴加工成负公差尺寸来实现的。用这种方法使螺矩稍微缩短,在装配时使滚珠丝杠螺母受到压缩。在工作温度下丝杆膨胀装置就正常工作。 在温度极高的情况下, 可将单独的冷却系统装进滚珠丝杆, 将空气或油雾喷在丝杆轴上。通常, 空气冷却更为有效, 并且不会象那样损耗。冷却也可以通过使压力水通过空心轴滚珠丝杆的方法来进行,采用这样的系统, 滚珠丝杆的温度几乎不会升高。…

Read More

工业领域应用的传感器有哪些分类?

在了解传感器的分类前,我们先认识一下,传感器是由什么组成的! 传感器一般由敏感元件,转换元件及基本转换电路三部分组成。 ①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。 ②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。 ③基本转换电路是将该电信号转换成便于传输,处理的电量。 在前面的文章提到过,传感器相当于人类的感觉器官,一般分为内部传感器和外部传感器。 其实,传感器的分类还有很多种!在这篇文章小编一一给你带过... 按被测量对象 分为内部传感器和外部传感器。 内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。 外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。 按传感器能量源 可分为有源传感器和无源传感器。 (1)无源传感器:不需外加电源。而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型; 例如: 光电传感器能将光射线转换成电信号,其原理类似太阳能电池; 压电传感器能够将压力转换成电压信号; 热电传感器能将被测温度场的能量(热能)直接转换成为电压信号的输出等等。 (2)有源传感器:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。 按作用形式 可分为主动型和被动型传感器。 主动型传感器,此种传感器对被测对象能发出一定探测信号,能检测探测信号在被测对象中所产生的变化,或者由探测信号在被测对象中产生某种效应而形成信号。 (1)检测探测信号变化方式的称为作用型 (2)检测产生响应而形成信号方式的称为反作用型。 雷达与无线电频率范围探测器是作用型实例,而光声效应分析装置与激光分析器是反作用型实例。 被动型传感器只是接收被测对象本身产生的信号,如红外辐射温度计、红外摄像装置等。 按外界输入的信号变换为电信号采用的效应 可分为物理型传感器、化学型传感器和生物型传感器三大类 物理型传感器又可以分为结构型传感器和物性型传感器。 结构型传感器是以结构(如形状、尺寸等)为基础,利用某些物理规律来感受(敏感)被测量,并将其转换为电信号实现测量的。例如: 电容式压力传感器 电容式压力传感器 必须有按规定参数设计制成的电容式敏感元件,当被测压力作用在电容式敏感元件的动极板上时,引起电容间隙的变化导致电容值的变化,从而实现对压力的测量。 物性型传感器就是利用某些功能材料本身所具有的内在特性及效应感受(敏感)被测量,并转换成可用电信号的传感器。例如: 压电式压力传感器 压电式压力传感器 利用具有压电特性的石英晶体材料制成的压电式压力传感器,就是利用石英晶体材料本身具有的正压电效应而实现对压力测量的; 压阻式传感器 压阻式传感器 利用半导体材料在被测压力作用下引起其内部应力变化导致其电阻值变化制成的压阻式传感器,就是利用半导体材料的压阻效应而实现对压力测量的。 一般而言,结构型传感器强调要依靠精密设计制作的结构才能保证其正常工作;而物性型传感器则主要依靠材料本身的物理特性、物理效应来实现对被测量的敏感。 化学传感器是利用电化学反应原理,把无机或有机化学的物质成分、浓度等转换为电信号的传感器。最常用的是离子传感器,即利用离子选择性电极,测量溶液的pH值或某些离子的活度,如K+,Na+,Ca2+等。电极的测量对象不同,但其测量原理基本相同。 离子烟雾传感器 主要是利用电极界面(固相)和被测溶液(液相)之间的电化学反应,即利用电极对溶液中离子的选择性响应而产生的电位差。所产生的电位差与被测离子活度对数成线性关系,故检测出其反应过程中的电位差或由其影响的电流值,即可给出被测离子的活度。 化学传感器的核心部分是离子选择性敏感膜。膜可以分为固体膜和液体膜。玻璃膜、单晶膜和多晶膜属固体膜;而带正、负电荷的载体膜和中性载体膜则为液体膜。 化学传感器广泛应用于化学分析、化学工业的在线检测及环保检测中。 生物传感器是一种利用生物活性物质选择性来识别和测定生物化学物质的传感器。生物活性物质对某种物质具有选择性亲和力,也称其为功能识别能力。 生物传感器主要由两大部分组成。 其一是功能识别物质,其作用是对被测物质进行特定识别。 这些功能识别物有酶、抗原、抗体、微生物及细胞等。用特殊方法把这些识别物固化在特制的有机膜上从而形成具有对特定的从低分子到大分子化合物进行识别功能的功能膜。 其二是电、光信号转换装置,此装置的作用是把在功能膜上进行的识别被测物所产生的化学反应转换成便于传输的电信号或光信号。 生物传感器的最大特点是能在分子水平上识别被测物质,不仅在化学工业的监测上,而且在医学诊断、环保监测等方面都有着广泛的应用前景。 关于传感器,由于敏感材料和传感器的数量特别多,类别十分繁复,相互之间又有着交叉和重叠,这里就不再赘述。为了揭示诸多传感器之间的内在联系,小编找到了下图的传感器分类、转换原理和它们的典型应用,供选用传感器时参考。 随着“工业4.0”概念的深化,全球的传感器市场空间再一次被扩宽。据预测,2016年-2021年,传感器的复合年增长率预计为11%,到2021年市场规模将达到1906亿美元。 随着“工业4.0”概念的深化,全球的传感器市场空间再一次被扩宽。据预测,2016年-2021年,传感器的复合年增长率预计为11%,到2021年市场规模将达到1906亿美元。目前,全球传感器市场主要由美国、日本、德国的几家领先企业主导,博世、霍尼韦尔、飞思卡尔、日立等传统电子行业巨头,都把传感器作为未来业务的主要增长点。…

Read More

滚珠丝杠原理、参数、用途

滚珠丝杠是工具机和精密机械上最常使用的传动元件,其主要功能是将旋转运动转换成线性运动,或将扭矩转换成轴向反复作用力,同时兼具高精度、可逆性和高效率的特点。 滚珠丝杠由螺杆、螺母、钢球、预压片、反向器、防尘器组成。它的功能是将旋转运动转化成直线运动,这是艾克姆螺杆的进一步延伸和发展,这项发展的重要意义就是将轴承从滑动动作变成滚动动作。由于具有很小的摩擦阻力,滚珠丝杠被广泛应用于各种工业设备和精密仪器。 滚珠丝杠是工具机和精密机械上最常使用的传动元件,其主要功能是将旋转运动转换成线性运动,或将扭矩转换成轴向反复作用力,同时兼具高精度、可逆性和高效率的特点。 二、原理 1.按照国标GB/T17587.3-1998及应用实例,滚珠丝杠(已基本取代梯形丝杆,俗称丝杆)是用来将旋转运动转化为直线运动;或将直线运动转化为旋转运动的执行元件,并具有传动效率高,定位准确等。 2.当滚珠丝杠作为主动体时,螺母就会随丝杆的转动角度按照对应规格的导程转化成直线运动,被动工件可以通过螺母座和螺母连接,从而实现对应的直线运动。 滚珠丝杠轴承为适应各种用途,提供了标准化种类繁多的产品。广泛应用于机床,滚珠的循环方式有循环导管式、循环器式、端盖式。预压方式有定位预压(双螺母方式、位预压方式)、定压预压。可根据用途选择适当类型。丝杆有高精度研磨加工的精密滚珠丝杠(精度分为从CO-C7的6个等级)和经高精度冷轧加工成型的冷轧滚珠丝杠轴承(精度分为从C7-C10的3个等级)。 三、用途 超高DN值滚珠丝杠:高速工具机,高速综合加工中心机 端盖式滚珠丝杠:快速搬运系统,一般产业机械,自动化机械 高速化滚珠丝杠:CNC机械、精密工具机、产业机械、电子机械、高速化机械 精密研磨级滚珠丝杠:CNC机械,精密工具机,产业机械,电子机械,输送机械,航天工业,其它天线使用的致动器、阀门开关装置等 螺帽旋转式(R1)系列滚珠丝杠:半导体机械、产业用机器人、木工机、雷射加工机、搬送装置等 轧制级滚珠丝杠:低摩擦、运转顺畅的优点,同时供货迅速且价格低廉 重负荷滚珠丝杠:全电式射出成形机、冲压机、半导体制造装置、重负荷制动器、产业机械、锻压机械 四、类型 常用的循环方式有两种:外循环和内循环。滚珠在循环过程中有时与丝杠脱离接触的称为外循环;始终与丝杠保持接触的称为内循环。 上传循环 1) 外循环:外循环是滚珠在循环过程结束后通过螺母外表面的螺旋槽或插管返回丝杠螺母间重新进入循环。外循环滚珠丝杠螺母副按滚珠循环时的返回方式主要有端盖式、插管式和螺旋槽式。常用外循环方式端盖式;插管式;螺旋槽式。端盖式,在螺母上加工一纵向孔,作为滚珠的回程通道,螺母两端的盖板上开有滚珠的回程口,滚珠由此进入回程管,形成循环。插管式,它用弯管作为返回管道,这种结构工艺性好,但是由于管道突出螺母体外,径向尺寸较大。螺旋槽式,它是在螺母外圆上铣出螺旋槽,槽的两端钻出通孔并与螺纹滚道相切,形成返回通道,这种结构比插管式结构径向尺寸小,但制造较复杂。外循环滚珠丝杠外循环结构和制造工艺简单,使用广泛。其缺点是滚道接缝处很难做得平滑,影响滚珠滚道的平稳性。 2) 内循环:内循环均采用反向器实现滚珠循环,反向器有两种类型。圆柱凸键反向器,它的圆柱部分嵌入螺母内,端部开有反向槽。反向槽靠圆柱外圆面及其上端的圆键定位,以保证对准螺纹滚道方向。扁圆镶块反向器,反向器为一般圆头平键镶块,镶块嵌入螺母的切槽中,其端部开有反向槽,用镶块的外轮廓定位。两种反向器比较,后者尺寸较小,从而减小了螺母的径向尺寸及缩短了轴向尺寸。但这种反向器的外轮廓和螺母上的切槽尺寸精度要求较高。 种类选择 滚珠丝杠的螺母,根据钢球的循环方式可分为:弯管式、循环器式、端盖式。这三种循环方式的特长。 弯管式 (SBN、BNF、BNT、BNFN、BIF 和 BTK型)这些型号,搜索的到。 循环式导片式(HBN型) 这些型号是最典型的螺母,通过使用弯管让钢球经行循环。钢球从丝杆轴的沟槽中掬取进入弯管后,再回到沟槽中,做无限循环运动。 循环器式 (DK、DKN、DIK、JPF 和 DIR型) 这些型号是最小型的螺母,通过循环器改变钢球的行进方向,越过丝杆轴外径回到原位,做无限循环运动。 端盖式 (SBK、SDA、SBKH、WHF、BLK、WGF、BLW、WTF、CNF 和 BLR型) 这些型号是最合适高速给进的螺母。钢球利用端盖,从丝杆轴的沟槽中被掬取到螺母的通孔里,通过通孔又回到沟槽中,做无限循环运动。 特点: 五、特点 1、摩擦损失小、传动效率高 由于滚珠丝杠副的丝杠轴与丝杠螺母之间有很多滚珠在做滚动运动,所以能得到较高的运动效率。与过去的滑动丝杠副相比驱动力矩达到1/3以下,即达到同样运动结果所需的动力为使用滑动丝杠副的1/3。在省电方面很有帮助。 2、精度高 滚珠丝杠副是一般是用世界最高水平的机械设备连贯生产出来的,特别是在研削、组装、检查各工序的工厂环境方面,对温度、湿度进行了严格的控制,由于完善的品质管理体制使精度得以充分保证。 3、高速进给和微进给可能 滚珠丝杠副由于是利用滚珠运动,所以启动力矩极小,不会出现滑动运动那样的爬行现象,能保证实现精确的微进给。 4、轴向刚度高 滚珠丝杠副可以加与预压,由于预压力可使轴向间隙达到负值,进而得到较高的刚性(滚珠丝杠内通过给滚珠加予压力,在实际用于机械装置等时,由于滚珠的斥力可使丝母部的刚性增强)。 5、不能自锁、具有传动的可逆性 六、滚珠丝杠的保护 滚珠丝杠副可用润滑来提高耐磨性及传动效率。润滑剂分为润滑油及润滑脂两大类。润滑油用机油、90~180号透平油或140号主轴油。润滑脂可采用锂基油脂。润滑脂加在螺纹滚道和安装螺母的壳体空间内,而润滑油通过壳体上的油孔注入螺母空间内。 滚珠丝杠副和其它滚动摩擦的传动元件,只要避免磨料微粒及化学活性物质进入,就可以认为这些元件几乎是不产生磨损的情况下工作的。但如果在滚道上落入脏物,或使用肮脏的润滑油,不仅会妨碍滚珠的正常运转,而且使磨损急剧增加。 通常采用毛毡圈对螺母副进行密封,毛毡圈的厚度为螺距的2~3倍,而且内孔做成螺纹的形状,使之紧密地包住丝杠,并装入螺母或套筒两端的槽孔内。密封圈除了采用柔软的毛毡之外,还可以采用耐油橡胶或尼龙材料。由于密封圈和丝杠直接接触,因此防尘效果较好,但也增加了滚珠丝杠螺母副的摩擦阻力矩。为了避免这种摩擦阻力矩,可以采用由较硬塑料制成的非接触式迷宫密封圈,内孔做成与丝杠螺纹滚道相反的形状,并留有一定的间隙。…

Read More

六轴工业机器人的特点有哪些?

工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。 6轴工业机器人的全部控制由一台微型计算机完成。另一种是分散式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。根据作业任务要求的不同,机器人的控制方式又可分为点位控制、连续轨迹控制和力控制。 6轴工业机器人的特点主要有以下几方面: 1)可编程:6轴工业机器人最大特点是柔性启动化,柔性制造系统中的一个重要组成部分。工业机器人可随其工作环境变化以及加工件的变化进行再编程,适合于小批量多品种具有均衡高效率的柔性制造生产线的应用。 2)拟人化:6轴工业机器人结合机器人与人的特点。在6轴工业机器人的结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。其传感器提高了工业机器人对周围环境的自适应能力。 3)通用性:一般6轴工业机器人在执行不同的作业任务时具有较好的通用性。当然也有专用的工业机器人。 4)机电一体化:6轴工业机器人是机械学和微电子学的结合-机电一体化技术。工业机器人具有各种传感器可以获取外部环境信息,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都是微电子技术的应用,特别是计算机技术的应用密切相关。 六轴关节工业机器人的研发设计及制造已经有好几十年的历史了,整个工业机器人的研发制造体系较为完善,各研发厂家在相互竞争中可以相互模仿、改善、不断推陈出新。博立斯多年来坚持投入研发、生产各类自动化设备,其中包括:数控车床机械手、上下料机械手、机床机械手、冲压机械手、6轴工业机器人、4轴工业机械手、多轴工业机器人等。多年来不断推陈出新,研发生产的自动化设备帮助许多企业解决了生产难题,备受企业的喜爱。

直角坐标型机器人的概念、优势与应用

在中国,直角坐标型机器人的发展史已经有二十余年,基本已经实现了试验、引进到自主开发的转变。国产的直角坐标型机器人的实力虽然还不能与外资的品牌相比,但直角坐标型机器人是目前国产率最高的工业机器人。在中国这个机器人需求大市场中,综合各方因素考虑,对于很多企业,尤其是下游应用企业来说直角坐标型机器人显然是个不错的选择 直角坐标型机器人又称单轴机械手,工业机械臂,电缸等,是以XYZ直角坐标系统为基本数学模型,以伺服电机、步进电机为驱动的单轴机械臂为基本工作单元,以滚珠丝杆、同步皮带、齿轮齿条为常用的传动方式所架构起来的机器人系统,可以完成在XYZ三维坐标系中任意一点的到达和遵循可控的运动轨迹。 直角坐标型机器人因末端操作工具的不同,可以非常方便的用作各种自动化设备,完成如焊接、搬运、上下料、包装、码垛、拆垛、检测、探伤、分类、装配、贴标、喷码、打码、(软仿型)喷涂、目标跟随、排爆等一系列工作。应用对象涉及电子、机械、汽车、食品等诸多行业。 相对于关节型机器人而言,直角坐标型机器人不仅结构简单,而且成本低廉。直角坐标型组合方式灵活多样,可以组装成单轴到多轴的机械手,如龙门式、悬臂式、壁挂式等,也可根据不同的负载、行程、功能及特殊空间要求,为客户订制所需求产品。同时,X、Y、Z三轴基础上可以扩展旋转轴和翻转轴,构成五自由度和六自由度机器人,或者作为专业自动化机械中的直线定位系统。 相较于人工,直角坐标型机器人有无可比拟的优势。直角坐标型机器人运行速度快,重复定位精度高,可有效节省人工成本、快速提升产能,适合大批量生产,可缩短交货周期,能确保产品质量的稳定性、均匀性与一致性,生产制造出来的产品保障性更高。 除3C行业之外的应用领域,如食品、医药、注塑、机械等领域对直角坐标型机器人的需求亦逐年攀升。作为价格便宜、结构简单、国产化程度最高的机械手,直角坐标型机器人将在中国制造升级过程中得到更多应用。 国内直角坐标型机器人企业正快速崛起,但受制于成本高、规模小、技术含量不足等因素,与已经有三十余年积淀的外资品牌仍存在差距。中国大部分直角坐标型机器人的速度、精度、稳定性都不及外资品牌,并且其控制系统都需要从国外进口。据有关统计数据显示,2014年中国市场上,直角坐标型机器人国产占比42.22%,其余的57.78%全部为外资品牌占据。 在生产加工过程中,由于加工的精度、型材的刚性,以及关键零部件的采购单价等一些硬伤,所以与多关节机器人在实现国产化时所遭遇的尴尬相同,直角坐标型机器人的部分关键零部件也需要依赖进口。由此可见,在赶超外资的道路上,国产的直角坐标型机器人的道路依然困难重重。 但是,国产直角坐标型机器人厂家并没有坐以待毙。正由于看到了自己的不足,国内的厂家纷纷开始加大研发投入,引进人才,提高产品品质。部分厂家开始与国外控制器厂家合作,联合开发适用于直角坐标型机器人的控制器,如威洛博机器人、凯宝机器人等一些企业就已开始了他们与外资的合作研究。直角坐型标机器人所存在的困难正在逐步得以克服,国内的一些企业在未来几年内也有望赶上外资品牌的步伐。

工业机器人的分类及特点有哪些?

自20世纪60年代初第一代机器人在美国问世以来,工业机器人的研制和应用有了飞速的发展,随着“机器换人”和各政府的政策扶持下更为盛市。 一.工业机器人的分类 (1)工业机器人按臂部的运动形式分为四种: a 直角坐标型的臂部可沿三个直角坐标移动; b 圆柱坐标型的臂部可作升降、回转和伸缩动作; c 球坐标型的臂部能回转、俯仰和伸缩; d 关节型的臂部有多个转动关节。 (2) 工业机器人按程序输入方式区分有编程输入型和示教输入型两类: a 编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。 b 示教输入型的示教方法有两种: 一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。示教输入程序的工业机器人称为示教再现型工业机器人。 (3) 工业机器人按执行机构运动的控制机能又可分点位型和连续轨迹型。 a 点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业; b 连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。 (4) 智能工业机器人 具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作;如具有识别功能或更进一步增加自适应、自学习功能,即成为智能型工业机器人。它能按照人给的“宏指令”自选或自编程序去适应环境,并自动完成更为复杂的工作。 二、工业机器人的特点 工业机器人最显著的特点归纳有以下几个。 (1)通用性。除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。 (2)拟人化。工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。 (3)可编程。生产自动化的进一步发展是柔性自动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统(FMS)中的一个重要组成部分。 (4)机电一体化。工业机器人技术涉及的学科相当广泛,但是归纳起来是机械学和微电子学的结合——机电一体化技术。第三代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都和微电子技术的应用,特别是计算机技术的应用密切相关。 因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证一个国家科学技术和工业技术的发展和水平。