直角坐标机器人的主要特点和选型

直角坐标机器人主要由一些直线运动单元,驱动电机,控制系统和末端操纵器组成。针对不同的应用,可以方便快速组合成不同维数,不同行程和不同带载能力的壁挂式、悬臂式、龙门式或倒挂式等各种形式的直角坐标机器人。从简单的二维机器人到复杂的五维机器人就有上百种结构形式的成功应用案例。从食品生产到汽车装配等各行各业的自动化生产线中,都有各式各样的多台直角坐标机器人和其它设备严格同步协调工作。 可以说直角坐标机器人几乎能胜任几乎所有的产业自动化任务。下面是其主要特点: 1.任意组合成各种结构样式,带载能力和尺寸的机器人。 2.采用多根直线运动单元级连和齿轮齿条传动,可以形成几十米的超大行程机器人。 3.采用多根直线运动单元平连或带多滑块结构时其负载能力可增加到数吨。 4.其最大运行速度可达到每秒8米,加速度可达到每秒4米。 5.重复定位精度可达到0.05mm~0.01mm。 6.采用带有RTCP功能的五轴或五轴以上数控系统能完成非常复杂轨迹的工作。 直角坐标机器人的选型 1.机器人结构形式选择 根据前面“使用要求分析”中获得的信息资料来选择机器人的结构形式。原则上尽可能选择龙门式直角坐标机器人,但有时受工作空间限制必须选择悬臂式。在食品搬运和玻璃切割等项目中会产生大量粉末,伤害运动轴里面的导轨,此时最好采用悬挂式机器人。有时根据负载及运动间隔和空间限制必须选用挂臂式。根据机器人的工作任务来确定负载的运动位置精度要求,要考虑减速时晃动产生的位置误差。根据机器人的工作任务及其工作空间上的限制来确定运动轴数目及各自运动行程。 2.规划运动轨迹及计算运动速度 根据机器人的工作任务和空间限制来规划运动轨迹。尽可能减少运动间隔,对工作周期要求严的应用要尽可能运用多轴同时运动来减少运动时间和降低运动速度。抓取负载后运动速度要低,空载返回原始点时要快。负载大时加速度和减速度要小,尽可能避免产生巨大的冲击力。根据上面的原则给出各段运动的速度,加速度和减速度。各个运动段间尽可能平稳变速以保证工作周期,减少冲击力和运行噪音。在运动速度分配时要充分考虑各个运动过程与其它设备间的同步协调时间,而且规划的运动时间要比用户要求的时间短些。 3.受力分析 根据速度分析得出各个轴的最大加速度和减速度。然后再计算出多轴同时运动时产生的合成最大减速度。选择独立运动的减速度和同时运动时合成减速度二者中大的减速度,根据这个最大的减速度计算出XYZ三个方向的最大冲击力Fx,Fy和Fz及产生的最大扭曲力矩Mx,My和Mz。在计算不同轴扭曲力矩Mx,My和Mz时要考虑等效负载的重心位置,总重力和减速时产生的冲击力。 4.变形分析 绕度形变仅在大跨度悬空方式下,而且受力很大的情况下才发生。其绕度形变量的计算方法见下面的公式。 f=(F×L3)/(E×I×192) f:挠度形变(mm)f≤1mm F:负载压力(N) L:导轨长度(mm) E:弹性模量(70,000N/mm2) I:面积平方(mm4) 在很多任务中可以答应在运动中有一定量的变形,但在玻璃切割机等数控设备类的应用中是不答应产生变形的。 1.使用要求分析 对于选型的职员首先要有物理运动学基础,材料力学基础,伺服驱动使用和数控系统的应用经验,但最主要是把题目和要求等介绍很清楚。对于简单任务和有经验的工程师通过电话和邮件就可以沟通好,而对复杂的任务要到现场双方共同分析和制定任务描述,给出具体公道的要求。 下面是主要的数据和信息: 机器人的工作任务, 手抓和负载的总重量, 一个完整的工作周期是多少秒,可能分解成的子运动及对应的时间, 运动和取抓过程中与其它设备的同步/握手要求, 各个运动轴的有效运动长度及答应的最大运行速度, 机器人工作四周空间上的限制, 使用环境有粉末,高温,湿度等特殊防护要求。 2.选择驱动电机 根据直线定位单元驱动轴的最高转速来选择驱动电机。当驱动轴的最高转速低于600转/分时通常选用步进电机,否则要选用交流伺服电机。但交流伺服电机的最高转速不要超过3000转/分,否则影响其寿命。 当选用步进电机做驱动轴时,其负载的转动惯量与步进电机的转动惯量比要小于12,当选用伺服电机做驱动轴时,其负载的转动惯量与伺服电机的转动惯量比要小于8,否则影响其高动态特性。但转动惯量比大于上面的数值时,要加减速机。在不超过驱动电机最高转速限制情况下,要尽量选择大减速比的减速机。为了保证高的动态特性,保证在约定的时间内完成任务,驱动电机的最大出力要比理论计算值至少高出85%。通常所选择的驱动电机的最大出力要比理论计算值至少高出100%,而转动惯量比要小于5。 3.确定机器人的结构及各个运动轴 根据上面6个方面的信息和数据就可以终极选定机器人的结构形式及每个运动轴的具体型号和长度等,通常我们能从图片库中找出同样结构的照片,这里的照片是指CAD图或以往用户机器人的照片。还要设计好各个轴间的连接板,不仅要考虑机械方面的装配配合精度,材料的物理强度,连接螺丝杆的拉力等,更要考虑在主要受冲击方向加大加强连接板,必要时增加连接板。主要螺丝杆和螺丝帽要加胶,以防长期振动后变松动。 机器人在加速和减速时会产生强大的冲击力,而且通常天天要工作24小时,所以机器人必须被牢固地安装在支架上。机器人的支架要有足够的抗冲击力,要有地脚,以保证在长期高速高动态运动冲击下,没有任何晃动。此外在安装时要保证运动轴间的平行度、平面度和垂直度。 4.选择末端操纵器——手爪系统 根据其具体应用情况,其手爪系统可能是气动吸盘,气动夹取手爪,电动夹取手爪,电磁吸取手爪,焊枪,胶枪,专用工具和检测仪器等。在很多场合可以一次抓取多个工件。

导轨的设计原则

1.运动灵敏度和定位精度 运动灵敏度是指运动构件能实现的最小行程;定位精度是指运动构件能按要求停止在指定位置的能力。运动灵敏度和定位精度与导轨类型、摩擦特性、运动速度、传动刚度、运动构件质量等因素有关。 2.运动平稳性 直线运动导轨的几何精度一般包括:垂直平面和水平平面内的直线度;两条导轨面间的平行度。导轨几何精度可以用导轨全长上的误差或单位长度上的误差表示。 导轨运动平稳性是指导轨在低速运动或微量移动时不出现爬行现象的性能。平稳性与导轨的结构、导轨副材料的匹配、润滑状况、润滑剂性质及导轨运动之传动系统的刚度等因素有关。 3.抗振性与稳定性 抗振性是指导轨副承受受迫振动和冲击的能力,而稳定性是指在给定的运转条件下不出现自激振动的性能。 4.刚度 导轨抵抗受力变形的能力。变形将影响构件之间的相对位置和导向精度,这对于精密机械与仪器尤为重要。导轨变形包括导轨本体变形导轨副接触变形,两者均应考虑。 2.精度保持性 精度保持性是指导轨工作过程中保持原有几何精度的能力。导轨的精度保持性主要取决于导轨的耐磨性极其尺寸稳定性。耐磨性与导轨副的材料匹配、受力、加工精度、润滑方式和防护装置的性能的因素有关,另外,导轨及其支承件内的残余应力也会影响导轨的精度保持性。

如何选择直线模组伺服马达的控制方式?

直线模组伺服电机的控制方式有:位置、速度、力矩三种控制模式。 一般直线模组滑台驱动器控制的好不好,有个比较简单的方式叫响应带宽,当转矩控制或者速度控制时通过脉冲发生器给他一个方波信号,使电机不断正,反转,不断的调高频率,示波器上显示的是扫频信号 ,当包缝线的顶点达到顶值时表示已经失步,这时的频率的高低,就能显示出谁的产品好。一般的电流环能到10000赫兹以上,而速度环只到几十。 1.转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2.位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3.速度控制:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但要把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。 就伺服驱动器的响应速度来看,转矩模式运算量小,驱动器对控制信号的响应快;位置模式运算量大,驱动器对控制信号的响应慢。 速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的,具体采用什么控制方式要根据客户对直线模组伺服电机的要求来选择: 1)对电机的速度、位置都没有要求,只要输出一个恒转矩,用转矩模式是合适; 2)对位置和速度有精度要求,而用转矩模式不太方便,可 先速度或位置模式,上位控制器有比较好的闭环控制功能,用速度控制效果会好一点; 3)对运动中的动态性能有比较高的要求时,需要实时对电机进行调整,控制器本身的运算速度也很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度控制方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,效率提高。

机器人由哪些部件构成?

机器人作为一个系统,它由如下部件构成: 机械手或移动车:这是机器人的主体部分,由连杆,活动关节以及其它结构部件构成,使机器人达到空间的某一位置。如果没有其它部件,仅机械手本身并不是机器人。

滚动直线导轨的分类,特点

滚动直线导轨副的分类、特点 各类产品的共性: 直线导轨副是实现无限接长以及批量提供互换性导轨副。由于关键生产设备及检测设备都是引进的德国、意大利、日本、美国等的先进设备,所使用的关键工具、刀具等也是引进的国际上著名厂家的产品以及长年积累的先进生产技术和测量技术等保证了HTPM产品高精度及质量的稳定性,大批量生产的直线导轨90%以上可以达到2级以上,并可以生产原作为发展级别的1级精度产品。 使用高质量的钢种及精湛的热处理加工技术,通过严格的过程控制,保证产品卓越的耐用性。 圆滑的反向器循环结构及滑块的过渡曲线的设计与制造,使HTPM产品运动流畅、振动及噪声小。通过严格试验,精心选用特殊具有自润滑性能、耐冲击能力强的工程塑料,满足HTPM产品的高速和高加速的要求。 控制导轨弯曲变形量,安装孔孔距精度高,保证HTPM产品安装方便。 设计精度和性能指标以替代进口为目标。 各类产品的特性: 类双圆弧型(LG) 沟槽采用独特的类双圆弧结构,具有优异的静刚度和耐冲击性、高精度、误差均化能力强等性能指标。将滚珠和沟槽之间的接触角度设定为45°,使上下左右方向负载的承受能力及刚性均匀;承受冲击载荷和重载荷作用时,承载接触区增大,提高了系统的刚度;使在超高负载的情况下,也能将负载转移到非接触表面,为此,大幅度地提高了产品本身的耐冲击性;容易精确测量轨道的各项精度,从而稳定地生产高精度直线导轨。 主要用于加工中心、数控铣床、数控车床、平面磨床、座标磨床、工艺机器人、电火花加工机床等等对精度要求较高或对刚性要求较高的机床。 微型(LM/LMW) 左右各1列滚道的精巧设计,体积小、轻量化;沟槽设计为哥特式结构,其接触角均为45°,因而上下左右四个方向都具有均等的刚性和负载能力;LMW系列由于导轨幅度宽,在横向扭矩方面具有高刚性和大负载能力,满足单根使用的各种装置。在有限的空间内优化设计,尽可能大地用大直径的钢球,以提高其刚性及负载能力。 主要用于半导体制造设备、印刷电路板IC组装设备、医疗设备、机械手臂、精密测量仪器、光学平台。 单圆弧型(LGS) 采用DF结构,对安装误差的吸收能力大;将滚珠和沟槽之间的接触角度设定为45°,使上下左右四方向负载的承受能力均匀,并且各方向都具有足够的刚性;采用新型的双唇密封端盖,比传统的密封端盖更能提高防尘和防污染物的能力;增加顶密封装置,使导轨副形成了全封闭型的有效密封,使顶部形成双保险;为适应更恶劣的使用环境,使用新型不锈钢防护带保护导轨的顶面并封闭导轨的安装孔,使密封效果更加完美。 主要用于木工机械、材料供给装置系统、电火花加工机床、激光加工机械、光学机械测量台、轻工机械设备等,特别适用于密封要求严格或安装基础误差较大的场合。 滚柱型(LGR) 以圆柱滚子代替钢球,滚子与导轨、滑块为线接触,在承受高负荷时仅仅形成微小的弹性变形,大幅提高导轨的刚性值;采用DB45°组合,能承受上下左右四方向等载荷,并且各方向都具有超高的承载能力和刚性;专用导轨磨床实现三面同时磨削,使产品具有极高的精度;滑块两端装有密封端盖,滑块内部和底部装有密封底片,具有优异的防尘性能,从而保证了产品的使用寿命,为适应更恶劣的使用环境,可选择不锈钢防护带板和安装双层密封端盖。 主要用于加工中心、NC车铣床、NC复合加工机床、磨床、立式或卧式镗、铣床和各大型落地数控镗铣、龙门式加工中心等大、重型机床,特别适合超高精度、超重负荷或高速机床等高档机床使用。

滑台模组安全实用的五大注意事项

滑台模组是一种高自动化装置,在整个实用过程中都要特别注意安全问题,稍不注意就会导致不堪设想的后果, 应该注意以下5点事项: 1、禁止在带有磁电妨害可能的情况下使用,在有电磁、静电气放电、无线磁波妨害的场所,不要使用错误操作会造成危险。     2、如果取出马达的话,会有上下轴滑落的危险,切断控制器电源,取出请用台挡住上下周轴,请注意尽量不要让身体夹在上下周驱动部分及上下轴和架台之间。   3、终端效果的设计操作是为了不让动力(电力、空气y压力等)消失或冲动而产生危险,终端效果会在夹持物体落下时的危险,为该物体的大小、重量、温度、化学性质的勘测,适当采取安全检查防护措施。   4、禁止任何可燃性气体等环境中使用。不要在可燃性气体、可燃性粉末、引火性液体等欢迎里面使用,有爆发、引火的可能性。   5、解除刹车的话,有上下轴下滑的危险,按急停按钮、解除刹车之前、请用台挡住上下轴,进行解除刹车时,请注意保护不要被夹在上下轴和架台之间。   直线模组轴承的技术突破:   1、结构简洁,可节省机械设计空间,具有多种安装与连接方式和附件可供设计选择,节省时间,维修方便,伺服滑台可靠性高、指令系统简单、编程简便易学、易于掌握、体积小、维修工作少、现场接口安装方便等一系列优点。技术选型方面, 尽量让品牌之间互换性更强。     2、材质方面,铝合金缸体各个品牌逐步统一采购统一品质的材质,这样质量上可以有保证。     3、技术寿命上,现在很多轴承的厂家逐步改进他们的使用寿命,同样也带来稳定性。    只有严格遵循相关的操作规程才能更好的发挥出线性滑台模组的作用,尽可能的减少故障的发生

工业机器人控制系统的性能

2016年,不简单!在这一年,机器人行业实现了快速的发展。从猴年央视春节晚会上大放异彩的机器人舞蹈到现在遍地开花的各大机器人操作系统、控制系统企业,从全国各地的机器人大会、机器人论坛到机器人与互联网运营、大数据等新兴技术的结合,我们惊奇的发现,机器人早已不是过去那个只会重复体力劳动的“大笨熊”,而是越发的智能化和个性化。 现在,越来越多的机器人进入那些“百姓”企业,企业在欢庆的同时,也盘算着自己心里的“小九九”——机器人的控制系统性能如何呢? 在机器人行业,提到性能规范,一般是针对整机而言。评价工业机器人整机性能的指标有很多,基于不同的的设计目的以及用途,其整机配件搭配、结构设计以及参数调整也有所差异,控制系统只是其中的一个环节,发动机(伺服电机)、变速箱(减速器)、底盘/悬挂(结构件)等对机器人整体的性能都有很大的影响。 一般来说,工业机器人控制系统的性能可以由机器人的位姿精度和轨迹精度来间接表示。 位姿精度(PoseAccuracy) 机器人的位姿精度一般指位姿重复度。 机器人的位姿是指机器人相对于某一参考坐标系的位姿,其重复位姿精度是机器人的一项最重要的技术指标,该指标集中反映机器人的机电性能和使用效果,即机器人对同一指令位姿从同一方向重复响应n次后实到位姿的一致程度。一般采用激光跟踪仪进行位姿精度的测量,如下图所示: 想要达到较高的位姿精度,需要控制系统提供以下功能: 补偿机械连杆的运动学参数误差,如连杆加工误差、装配误差、机械公差等; 补偿关节柔性及连杆柔性; 提供高精度的机械零点标定功能。 轨迹精度(PathAccuracy) 机器人的轨迹精度,一般是指轨迹重复精度,表示机器人对同一轨迹指令重复n次时实到轨迹的一致程度。一般也采用激光跟踪仪进行测试,让机器人重复走某一条轨迹n次,然后取由n条轨迹组成的轨迹条横切面的半径。如下图所示:

谈谈直线导轨的选型

直线导轨副一般由导轨、滑块、反向器、滚动体和保持器等组成,它是一种新型的作相对往复直线运动的滚动支承,能以滑块和导轨间的钢球滚动来代替直接的滑动接触,并且滚动体可以借助反向器在滚道和滑块内实现无限循环,具有结构简单、动静摩擦系数小、定位精度高、精度保持性好等优点。 选型步骤和参数考量: 1.确定滑轨宽度。 根据载荷确定直线导轨的型号。一般直线导轨是以滑轨的宽度为标准制定型号规格。滑轨的宽度亦称轨宽。轨宽是决定其负载大小的关键因素之一,四排滚珠(也有部分两排珠的)的方轨现货产品一般有15、20、25(23)、30(28)、35(34)、45、55(53)、65(63),某些品牌最大只生产到45规格,小的可能只到30。期货产品也有85、120等,但大部分厂家不生产。 微型滑轨(基本是两排滚珠)规格有3、5、7、9、12、15,上述6个规格又各有一个宽型规格(滑轨宽度是标准型的2倍,其中15型滑轨的安装孔是2列),一共12种,但是有些厂家不能生产7以下的型号,具体请咨询该品牌供应商。注:()中是实际轨宽。 2.确定滑轨长度。 这个长度是轨的总长,不是行程。全长=有效行程+滑块间距(2个以上滑块)+滑块长度×滑块数量+两端的安全行程,如果增加了防护罩,需要加上两端防护罩的压缩长度。需要注意的是,事先问清楚该品牌该规格导轨整支的最大长度,超过这个长度是需要对接使用的。多数厂家整支长度最大是4000(微轨一般是1000),有些是3000,这和厂家的加工设备有关。需要对接并且用户想事先在机器上加工安装孔的情况下最好提供接口图纸。另一点请特别注意,导轨上的安装孔孔间距是固定的,用户在确定轨长时要注意位置,例:20的轨,孔间距是60mm如果定制长度为600的滑轨,如果不告诉供应商需要的端部尺寸,一般到货的状态是10个安装孔,导轨两端面到各自最近的安装孔中心的距离是30、30。空端距不一样则要跟供应商具体说明。各品牌对端部尺寸的出货规定多数是默认两端相等。 3.确定滑块类型和数量。 常用的滑块是两种:法兰型,方形。前者高度低一点,但是宽一点,安装孔是贯穿螺纹孔,后者高一点,窄一点,安装孔是螺纹盲孔。两者均有短型、标准型和加长型之分(有的品牌也称为中负荷、重负荷和超重负荷),主要的区别是滑块本体(金属部分)长度不同,当然安装孔的孔间距也可能不同,多数短型滑块只有2个安装孔。滑块的数量应由用户通过安全载荷计算确定。滑块类型和数量与滑轨宽度构成负载大小的三要素。 4.确定精度等级。 任何厂家的产品都会标注精度等级,有些厂家的标注比较科学,一般采用该等级名称的第一个字母,如普通级标N,精密级标P。精度是个综合概念,一般由滑块基准侧面相对同侧滑轨侧面的行走直线误差、组合高度误差,滑轨侧面至滑块基准侧面宽度误差、成对高度误差以及成对宽度误差构成。对于多数产业机械,普通级精度可以满足要求,高一点的就选H级,数控机床等设备以选择P级常见,其他超精密机械选择SP(超级精度)、UP(顶级精度)为宜。后面3个等级需要苛刻的安装、使用条件才能展示其性能。 5.确定其他参数 除上述4个主要参数外,还有一些参数需要确定,例如组合高度类型、预压等级等。 组合高度类型主要有2类:高组装型和低组装型。 顾名思义,高组装型的组合高度(滑轨的底面到滑块的顶面)要高一些,而低组装型要低一些,视规格大小差异在2~7mm之间,造成这个差异的原因是滑块高度尺寸不同,一般与滑轨无关(也有部分品牌轨和块均不同)。这两种类型对导轨副其他参数影响不太,用户都可以选用。我提示两点:一是高组装型多数品牌现货供应,低组装型可能备货较少,考虑到以后损坏的订货时间,尽量选前者。二是高组装型的滑块一般会比低组装型的贵一点点。 预压等级高的表示滑块和滑轨之间的间隙小或为负间隙,预压等级低的反之。感官区别就是等级高的滑块滑动阻力大,等级低的阻力小。表示方法得看厂家选型样本,等级数有3级的,也有5级的。等级的选择要看用户的实际使用场合,大致的原则是滑轨规格大、负载大、有冲击、精度高的场合可以选预压等级高一点的,反之选低一点。提示:1–预压等级与质量无关,2—预压等级与滑轨使用精度成正比,与使用寿命成反比。

自动化机械手与工业机械手的区别

自动化机械手与工业机械手都是属于机械手的范围的,都是用于加工生产。 根据自动化机械手及自动生产线在国民经济各行业应用的情况,具有以下一些特点。 1.原材料多样化 第一大类是包括机械加工、轻工机械等以金属材料作为加工的原料,如钟表、缝纫机、自行车和家用电器等的加工。 第二大类是以农、林、牧、副及化工产品等作为加工的原料,如食品机械中的糕点机械以农产品为主要原料;罐头、酿造机械以农、副产品为主要加工原料;制浆造纸机械以林产品和农副产品为原材料;皮革机械以畜牧产品为主要原料;陶瓷、玻璃、则以矿物、化工产品为其原料。其表明自动化机械手及自动生产线应用领域广泛。 2.自动化机械手及自动生产线工艺种类多样化; 1)完成机械作用的有金属切削、装配。 2)完成物理作用的有烟草。 3)完成作用的有发酵。 4)完成电化学作用的有电镀与电腐蚀。 5)完成化学作用的有造纸机械中的蒸煮、灯泡机械中的熔炼。 3.门类繁多,结构多样化 工业门类多,使用的机械因行业、加工的产品、功能与作用的不同,因而在原理与运动机构上有着很大差异,甚至完成同一职能的也会有不同的工作原理与不同的机构。如机械加工生产线加工同一种产品可以使用不同的设备,应用到的自动化机械手与自动生产线也有所不同;有着各种不同的工艺原理和结构;灯泡绕丝机因工艺原理的不同,有无芯、有芯连续和有芯不连续绕丝机之分。 4.产品量大、自动化程度高 工业产品为人民日常生活所必需,因而要求成批大量生产,也就必然要求广泛采用半自动化、自动化的机械手,随之自动生产线的应用也日益广泛。 5.机械手往往具有动作复杂、机构运动速度高、涉及学科领域广、更新换代快等特点。 工业机械手是:能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。 工业机械手是最早出现的工业机器人,也是最早出现的现代机器人,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。 机械手是在机械化,自动化生产过程中发展起来的一种新型装置。 在现代生产过程中,机械手被广泛的运用于自动生产线中,机器人的研制和生产已成为高技术领域内,迅速发展起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。 机械手虽然还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。 自动化机械手由5大部分组成: 驱动系统:它是自动机械手的动力来源,可以是电动机驱动、液压驱动、气压驱动等。 传动系统:它的功能是将运动和动力传递给各种执行机构,以便完成自动化机械手的工艺操作,同时也将运动传给辅助机构完成辅助动作。其中包括皮带传动、齿轮传动机构等。 执行机构:它是实现自动化操作与辅助操作的部分,其动作顺序与运动规律依工艺原理和要求而定。 控制系统:它的功能是控制机器的驱动系统、传动系统、执行机构,将运动分配给各执行机构,使它们按时、按顺序进行协调动作。 检测系统:它的功能是对自动化机械手的位置、行程、速度、压力、流量等进行检测并反馈给控制系统。

直线导轨使用中的保养方法

直线导轨在使用中,由于受到外部环境的影响,造成它们非常容易被锈蚀。直线导轨锈蚀主要是由两种原因造成的:一是轴承自身的金属侵蚀,二是工具要素的侵蚀。直线导轨自身的金属侵蚀占绝大比例,由于工作环境的特殊原因,很多时候生锈是无法避免。特别是天气比较热的时候,操作人员的手汗也能造成直线导轨锈蚀,这是因为人体汗液接触轴承时会在其表面发生汗液膜,在金属表面汗液里的盐分跟金属反映而招致侵蚀。当然如果有有效的保护措施,这种情况完全能够避免,如带上专业拿取零件的专业的手套来安装操作。直线导轨的金属侵蚀会影响导轨的哪些方面呢?一,表面光亮度;二,金属资料的化学结构和成分;三,金属表面的溶液成分及PH值。 除了在直线导轨职业外,那类润滑脂的使用量最大高速线材轧机轴承,约占分用脂量的70%。因为那类润滑脂选用了纤维娇嫩、轻难过滤的锂白做稠化剂,使用矿藏油为底子油,很轻难知脚外等级低深沟球轴承下降振荡值的需求。另一个利益是具无劣良的泵送性,不管是机械加脂,仍是手艺涂脂,都简练难行。而且,该润滑脂的代价低价,可以大大下降轴承本钱。可是,因为使用了矿藏底子油,使那类润滑脂正在除锈和防锈机能以外的一些理化目标上大打合扣。如轴承寿数只能到达200小时,直线导轨常见问题。起动和工作力矩正在-20℃测验时就无难题。该类润滑脂使用温度通常为-20~120℃,当正在150℃以上高温使用时,会泛起底子油蒸腾过快,流掉严肃等表象,大大缩短VAV直线导轨使用寿数。 当前,使用细密轴承的设备日趋精细化,促进直线导轨所用的润滑脂必需具无以下机能: (1)具无和直线导轨相同的工作寿数,尽量耽搁保护周期,缩短停机时刻,行进劳作出产率。 (2)正在dn>5×105的高速下要保证电机温升低,不甩油,然后下降功耗,保护电机。 (3)其纯量含量控制正在必定规范之下,最大地减少设备噪声对状况的污染。 (4)正在超低温工做前提下保证直线导轨起动和工作的灵性,直线导轨常见问题。保证输出功率最小。拆下来的深沟球轴承的清洁,分粗清洁和细清洁,别离放在容器中,先放上金属的网垫底,使轴承不直接触摸容器的脏物。粗清洁时,假设使直线导轨带着脏物旋转,会损害深沟球轴承的翻滚面,大概加以留心。

机器人设计中用步进电机的优点有哪些?

步进电机低速大扭矩设备,使传输更短这意味着更高的可靠性,更高的效率,更小间隙和更低的成本。正是这一特点,使得步进理想的机器人,因为大多数机器人运动是短距离要求高加速度达到低点的循环周期。 功率-重量比高于直流电动机低。大多数机器人运动是不是长距离高速(因此高功率),但通常包括短距离的停止和启动。在低转速高扭矩他们是理想的机器人。 步进电机定位装置,所以不能有错误的工作,例如过度的负荷下不会放缓,但将停止。它们不能被用来发挥独立的位置的力。 机器人是位置的设备,旨在进入精确位置没有错误。在一档或碰撞时看门狗编码器报告错误并停止进一步的动作的机器人。 机器人设计中选用用步进电机的优点: 1 对于同等性能的步进电机更便宜 2 步进电机是无刷电机等有更长的寿命。 3 作为数字马达就可以准确地定位不打猎或过冲。 4 驱动模块不是线性放大器这意味着更少的散热片,更高的效率,更高的可靠性。 5 驱动模块比线性放大器比较便宜。 6 没有昂贵的伺服控制的电子元件,因为信号直接从MPU起源。 7 软件故障安全。主控板问题步进脉冲。如果该软件无法工作或崩溃电机停止。 8 电子驱动器故障 – 安全。如遇驱动放大器故障的电机锁固,将无法运行。当伺服驱动器发生故障的电机仍然可以运行,可能在全速运转。 9 速度控制精确和可重复的(晶体控制)。 10 如果需要,步进电机运行极为缓慢。

工业机器人的分类及特点有哪些?

自20世纪60年代初第一代机器人在美国问世以来,工业机器人的研制和应用有了飞速的发展,随着“机器换人”和各政府的政策扶持下更为盛市。 一.工业机器人的分类 (1)工业机器人按臂部的运动形式分为四种: a 直角坐标型的臂部可沿三个直角坐标移动; b 圆柱坐标型的臂部可作升降、回转和伸缩动作; c 球坐标型的臂部能回转、俯仰和伸缩; d 关节型的臂部有多个转动关节。 (2) 工业机器人按程序输入方式区分有编程输入型和示教输入型两类: a 编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。 b 示教输入型的示教方法有两种: 一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。示教输入程序的工业机器人称为示教再现型工业机器人。 (3) 工业机器人按执行机构运动的控制机能又可分点位型和连续轨迹型。 a 点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业; b 连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。 (4) 智能工业机器人 具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作;如具有识别功能或更进一步增加自适应、自学习功能,即成为智能型工业机器人。它能按照人给的“宏指令”自选或自编程序去适应环境,并自动完成更为复杂的工作。 二、工业机器人的特点 工业机器人最显著的特点归纳有以下几个。 (1)通用性。除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。 (2)拟人化。工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。 (3)可编程。生产自动化的进一步发展是柔性自动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统(FMS)中的一个重要组成部分。 (4)机电一体化。工业机器人技术涉及的学科相当广泛,但是归纳起来是机械学和微电子学的结合——机电一体化技术。第三代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都和微电子技术的应用,特别是计算机技术的应用密切相关。 因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证一个国家科学技术和工业技术的发展和水平。

直线模组-丝杆式

精密定位平台座选用缚度铝合金,经应力消除处理后再经摄氏196度之超深冷处理,可保证长期使用仍保有良好之精密度。铝合金滑动台和底座上装入直线导轨,座与滑动台搭配,实现了高刚性和负载容量。对负载负荷的变位量小,用于搭载物的质量或外部负载变动的用途也能依然保持高稳定性。 通过结合运用精密加工技术和电子工艺制造出了精密定位工作台系列产品。从模块式到高精密式种类繁多。精密定位工作台系列广泛应用于适合自动化及光电产业和半导体产业等很多精密器械的定位机构。 用户可根据不同的工作环境选择产品本色阳极氧化、硬质氧化、彩色氧化、染黑氧化、喷砂氧化、钝化、化学镀镍等表面处理方式。特殊要求可达到B.S 5599 英国国家标准、AMS2469C 太空材料规格及MIL-A-8625E TYPE Ⅲ军事规格等材质。     精密定位平台进给机构采用精密滚珠丝杆,是一款高可靠性高精度高刚性定位工作台。并列装入两组直线导轨,实现了稳定的高行走精度、定位精度和大搭载质量,该结构承受力矩及复合负荷较强。并可选择滑动台的长度。此外,还可选择滚珠丝杠的种类、导程、电机的种类、传感器的安装等各种规格,可根据用途组合成最优定位工作台。由全闭环控制实现了极高精度的定位工作台。最适合于以前无法使用滚动导向、需要高精度定位的用途。系统结构简洁,能节省空间和降低设备成本。 安装于底座时,无需拆开防护盖板,底座与滑动台的安装孔尺寸相同,易于多轴系统构成。

电缸的特点有哪些?

1.电缸工作原理: 电缸是实现高精度直线运动系列的全新革命性产品。   电缸又称电动缸,电动缸主要替代气缸,但是电控比较方便,工业设备上应用很多,开门,升降,推拉,推力从10kg-100吨都可以做到。 2.电缸的结构是:   电缸是伺服电机与丝杠一体化设计的模块化产品,将伺服电机的旋转运动转换成直线运动,同时将伺服电机最佳优点-精确转速控制,精确转数控制,精确扭矩控制转变成-精确速度控制,精确位置控制,精确推力控制。 1.电缸特点: 闭环伺服控制,控制精度达到0.01mm; 精密控制推力,增加压力传感器,控制精度可达1%; 很容易与PLC等控制系统连接,实现高精密运动控制。 噪音低,节能,干净,高刚性,抗冲击力,超长寿命,操作维护简单。 电缸可以在恶劣环境下无故障,防护等级可以达到IP66。 长期工作,并且实现高强度,高速度,高精度定位,运动平稳,低噪音。 2.低成本维护: 电缸在复杂的环境下工作只需要定期的注脂润滑,并无易损件需要维护更换,将比液压系统和气压系统减少了大量的售后服务成本。 3.配置灵活性: 可以提供非常灵活的安装配置,全系列的安装组件:安装前法兰,后法兰,侧面法兰,尾部铰接,耳轴安装,导向模块等; 可以与伺服电机直线安装,或者平行安装; 可以增加各式附件:限位开关,行星减速机,预紧螺母等; 驱动可以选择交流制动电机,直流电机,步进电机,伺服电机

直线模组-皮带式

皮带传动式单轴机器人的本体为精密挤压铝型材,本体两侧和底座的安装面有T型螺帽滑槽,确保底座安装和固定的实用性。型材的两侧T型螺帽滑槽可以安装传感器。一体的型材和直线导轨承载设计,高刚性,高速度,摩擦系数低,噪音小。平台本体的密封用不锈钢带与磁性密封条,全封闭式防尘设计,使用寿命长。是特别为多轴线性机械手臂的设计及制造者所提供的组合。皮带传动式本体是为固定各种行程、传动及动力需求而设计的模组化单轴机械手臂。 直线模组也称为线性模组、线性模块、直线模块、单轴机器人、精密定位工作台、直线滑台、直线工作平台。皮带式直线模组底座尺寸宽度为:40、70、90、100、110、136、140、150;最长行程可达18米。 同步带模组特点: ? 钢丝同步带传动; ? 高负载能力,速度高达3米/秒; ? 运输负载可达1700 N; ? 最大力矩可达115 Nm; ? 重复定位精度±0.05毫米; ? 维护成本低,可调整皮带的张紧; ? 容易安装,带有键槽的中空驱动轴; ? 为附件安装和驱动器本身需要的T形槽设计; ? 连接驱动轴夹紧装置(用于多轴系统的连接); ? 齿轮箱可选,多种多轴连接部件可选,安装附件和支架可选择。 应用场所:工装夹取,移载、定位,自动化工作站,半导体设备、TFT-LCD液晶面板设备,太阳能设备,LED线上设备,机械内部XYZ轴工作平台、点胶、锁螺丝、视觉检测、量测设备等,高速高精度场所。

线性模组选型的七大注意事项

线性模组广泛应用在自动化工业领域中,它在不同自动化工业领域发展当中,相对而言分化较大。那么在选择线性模组的时候要综合考虑各种因素,以下就是需要考核的几大因素。       1.抗振性与稳定性:稳定性是指在给定的运转条件下不出现自激振动的性能;而抗振性则是指模组副接受受迫振动和冲击的能力。   2.刚度对于精密机械与仪器尤为重要。模组变形包括导轨本体变形导轨副接触变形,导轨抵抗受力变形的能力。变形将影响构件之间的相对位置和导向精度。两者均应考虑。   3.运动灵敏度和走位精度:线性模组运动灵敏度是指运动构件能实现的最小行程;走位精度是指运动构件能按要求停止在目标位置的能力。运动灵敏度和走位精度与导轨类型、摩擦特性、运动速度、传动刚度、运动构件质量等因素有关。   4.精度坚持性:是指工作过程中保持原有几何精度的能力。模组的精度坚持性主要取决于导轨的耐磨性极其尺寸稳定性。耐磨性与导轨副的资料匹配、受力、加工精度、润滑方式和防护装置的性能的因素有关。导轨及其支承件内的剩余应力也会影响导轨的精度坚持性。 5.导向精度以及模组和支承件的热变形等。导向精度是指运动构件沿导轨导面运动时其运 动轨迹的准确水平。影响导向精度的主要因素有导轨承导面的几何精度、导轨的结构类型、导轨副的接触精度、外表粗糙度、导轨和支承件的刚度、导轨副的油膜厚度及油膜刚度。直线运动导轨的几何精度一般包括:垂直平面和水平平面内的直线度;两条导轨面间的平行度。导轨几何精度可以用导轨全长上的误差或单位长度上的误差表示。 6.运动平稳性:模组运动平稳性是指导轨在低速运动或微量移动时不出现爬行现象的性能。平稳性与导轨的结构、导轨副材料的匹配、润滑状况、润滑剂性质及导轨运动之传动系统的刚度等因素有关。   7.容易忽略的一个问题是电机,根据不同的要求可以选用不同的电机,要求低的场合可以用步进电机就够了,对速度有要求的场合可以考虑闭环步进,对速度和精度有要求的场合可以考虑伺服电机,对安装空间有要求的场合还可以选用驱动和电机一体化的伺服,大研工控有以上全系列产品,可以根据用户的要求给出最佳的电机匹配方案,在保证性能和品质的同时,降低成本。

工业机器人九大选型参数!

机器人适用于非常多的应用,从材料搬运到机器维护,从焊接到切割。在今天,工业机器人制造商开发了适用于各种应用的机器人产品。 经常提到的“工业机器人”,从字面上来说不难理解,但是如果真正想要买一台适用 的工业机器人,就还得需要知道更多。以下为你介绍几个在购买工业机器人时需要了解的主要参数。 一、工业机器人应用 行业 首先要知道的是你的机器人要用于何处。这是你选择需要购买的机器人种类时的首要条件。如果你只是要一个紧凑的拾取和放置机器人,Scara机器人是不错的选择。如果想快速放置小型物品,Delta机器人是最好的选择。如果你想机器人在工人旁边一起工作,你就应该选择协作机器人。 二、 机器人负载   负载是指机器人在工作时能够承受的最大载重。如果你需要将零件从一台机器处搬至另外一处,你就需要将零件的重量和机器人抓手的重量计算在负载内。 负载值都是要保证在任意位置能做到关节额定最大加速度的。 ABB IRB1200负载特性曲线: 三、 自由度(轴数)   机器人轴的数量决定了其自由度。如果只是进行一些简单的应用,例如在传送带之间拾取放置零件,那么4轴的机器人就足够了。如果机器人需要在一个狭小的空间内工作,而且机械臂需要扭曲反转,6轴或者7轴的机器人是最好的选择。轴的数量选择通常取决于具体的应用。需要注意的是,轴数多一点并不只为灵活性。事实上,如果你在想把机器人还用于其它的应用,你可能需要更多的轴,“轴”到用时方恨少。不过轴多的也有缺点,如果一个6轴的机器人你只需要其中的4轴,你还是得为剩下的那2个轴编程。 机器人制造商倾向于用稍微有区别的名字为轴或者关节命名。一般来说,最靠近机器人基座的关节为J1,接下来是J2,J3,J4以此类推,直到腕部。还有一些厂商像安川莫托曼则使用字母为轴命名。 四、 最大运动范围   在选择机器人的时候,你需要了解机器人要到达的最大距离。选择机器人不单要关注负载,还要关注其最大运动范围。每一个公司都会给出机器人的运动范围,你可以从中看出是否符合你应用的需要。最大垂直运动范围是指机器人腕部能够到达的最低点(通常低于机器人的基座)与最高点之间的范围。最大水平运动范围是指机器人腕部能水平到达的最远点与机器人基座中心线的距离。你还需要参考最大动作范围(用度表示)。这些规格不同的机器人区别很大,对某些特定的应用存在限制。 五、重复精度   这个参数的选择也取决于应用。重复精度是机器人在完成每一个循环后,到达同一位置的精确度/差异度。通常来说,机器人可以达到0.5mm以内的精度,甚至更高。例如,如果机器人是用于制造电路板,你就需要一台超高重复精度的机器人。如果所从事的应用精度要求不高,那么机器人的重复精度也可以不用那么高。精度在2D视图中通常用“±”表示。实际上,由于机器人并不是线性的,其可以在公差半径内的任何位置。 六、  速度   速度对于不同的用户需求也不同。它取决于工作需要完成的时间。规格表上通常只是给出最大速度,机器人能提供的速度介于0和最大速度之间。其单位通常为度/秒。一些机器人制造商还给出了最大加速度。 七、机器人重量   机器人重量对于设计机器人单元也是一个重要的参数。如果工业机器人需要安装在定制的工作台甚至轨道上,你需要知道它的重量并设计相应的支撑。 八、制动和惯性力矩   机器人制造商一般都会给出制动系统的相关信息。一些机器人会给出所有轴的制动信息。为在工作空间内确定精准和可重复的位置,你需要足够数量的制动。机器人特定部位的惯性力矩可以向制造商索取。这对于机器人的安全至关重要。同时还应该关注各轴的允许力矩。例如你的应用需要一定的力矩去完成时,就需要检查该轴的允许力矩能否满足要求。如果不能,机器人很可能会因为超负载而故障。 九、 防护等级   这个也取决于机器人的应用时所需要的防护等级。机器人与食品相关的产品、实验室仪器、医疗仪器一起工作或者处在易燃的环境中,其所需的防护等级各有不同。这是一个国际标准,需要区分实际应用所需的防护等级,或者按照当地的规范选择。一些制造商会根据机器人工作的环境不同而为同型号的机器人提供不同的防护等级。

直线滑台模组选型需要注意哪些事项?

直线滑台模组是一种替代人工的自动化方式,它具有比人工更高的搬运和水平匀速移动,更多精准的位置,以减少人工因失误引起的成本浪费,提高工作效率并可使在一定的程度上减小人工成本。 一般环境直线滑台模组产品特点: (1).可二轴、三轴、四轴等多种组合方式, (2).马达安装可选:外置直联、左折并行、右折并行, (3).重复定位精度:精密度±0.005mm、普通级±0.02mm, (4).滚珠螺杆驱动,半密封式结构, (5).结构紧凑、维护方便、可靠性高, (6).可根据需求自行选配马达(一般配步进电机或伺服电机)。 直线滑台模组选型需要注意以下三点: (1)、直线滑台模组在实际使用时,需要测算实际载重的物体重量,负荷>15KG,滚珠丝杆传动或齿轮齿条传动。 (2)、预留扩展空间:选型时预留扩展空间,有效行程比实际多50mm左右即可。 (3)、根据具体的用途,确定运动精度。一般有效行程大于400mm时,运动精度会下降。 直线滑台模组适用范围很广泛,适用于电子、汽车、LCD液晶面板、半导体、生物科技、医药等相关行业的搬运、移栽、涂布、检测、切割自动化设备。

电磁流量记的选型要点

根据不同的流量计的使用环境,流量计的类型也在不断的改变中,但是怎样去正确的选择流量计呢?如下是关于介绍(电)磁流量计的知识。 着重要大家认识的是如何选型方面的主要知识。 通用型电磁流量计产品和特殊型仪表可以从不同角度分类。 按激磁电流方式划分,有直流激磁、交流(工频或其他频率)激磁、低频矩形波激磁和双频矩形波激磁。 按输出信号连线和激磁(或电源)连线的制式分类,有四线制和二线制。 按转换器与传感器组装方式分类,有分离型和一体型。 按流量传感器与管道连接方法分类,有法兰连接、法兰夹装连接、卫生型连接和螺纹连接。 按流量传感器电极是否与被测液体接触分类,有接触型和非接触型。 按流量传感器结构分类,有短管型和插入型。 按用途分类,有通用型、防爆型、卫生型、防侵水型和潜水型等。 电磁流量计(EMF)的测量通道是一段无阻流检测件的光滑直管,因不易阻塞适用于测量含有固体颗粒或纤维的液固二相流体,如纸浆、煤水浆、矿浆、泥浆和污水等。 EMF不产生因检测流量所形成的压力损失,仪表的阻力仅是同一长度管道的沿程阻力,节能效果显著,对于要求低阻力损失的大管径供水管道最为适合。 EMF所测得的体积流量,实际上不受流体密度、粘度、温度、压力和电导率(只要在某阈值以上)变化明显的影响。 与其他大部分流量仪表相比,前置直管段要求较低。 EMF测量范围度大,通常为20:1~50:1,可选流量范围宽。满度值液体流速可在0.5~10m/s内选定。有些型号仪表可在现场根据需要扩大和缩小流量(例如设有4位数电位器设定仪表常数)不必取下作离线实流标定。 EMF的口径范围比其他品种流量仪表宽,从几毫米到3m。可测正反双向流量,也可测脉动流量,只要脉动频率低于激磁频率很多。仪表输出本质上是线性的。 易于选择与流体接触件的材料品种,可应用于腐蚀性流体。 EMF不能测量电导率很低的液体,如石油制品和有机溶剂等。不能测量气体、蒸汽和含有较多较大气泡的液体。 通用型EMF由于衬里材料和电气绝缘材料限制,不能用于较高温度的液体;有些型号仪表用于过低于室温的液体,因测量管外凝露(或霜)而破坏绝缘。 电磁流量计选型7大要素 1 、应用概况 大口径仪表较多应用于给排水工程。中小口径常用于固液双相等难测流体或高要求场所,如测量造纸工业纸浆液和黑液、有色冶金业的矿浆、选煤厂的煤浆、化学工业的强腐蚀液以及钢铁工业高炉风口冷却水控制和监漏,长距离管道煤的水力输送的流量测量和控制。小口径、微小口径常用于医药工业、食品工业、生物工程等有卫生要求的场所。 2、精度等级和功能 市场上通用型EMF的性能有较大差别,有些精度高、功能多,有些精度低、功能简单。精度高的仪表基本误差为(±0.5%~±1%)R,精度低的仪表则为(±1.5%~±2.5%)FS,两者价格相差1~2倍。因此测量精度要求不很高的场所(例如非贸易核算仅以控制为目的,只要求高可靠性和优良重复性的场所)选用高精度仪表在经济上是不合算的。 有些型号仪表声称有更高的精确度,基本误差仅(±0.2%~±0.3%)R,但有严格的安装要求和参比条件,例如环境温度20~22℃,前后置直管段长度要求分别大于10D,3D(通常为5D,2D)甚至提出流量传感器要与前后置直管组成一体在流量标准装置上作实流校准,以减少夹装不善的影响。因此在多种型号选择比较时不要单纯只看高指标,要详细阅读制造厂样本或说明书做综合分析。 市场上EMF的功能差别也很大,简单的就只是测量单向流量,只输出模拟信号带动后位仪表;多功能仪表有测双向流、量程切换、上下限流量报警、空管和电源切断报警、小信号切除、流量显示和总量计算、自动核对和故障自诊断、与上位机通信和运动组态等。有些型号仪表的串行数字通信功能可选多种通信接口和专用芯片(ASIC),以连接HART协议系统、PROFTBUS、Modbus、CONFIG、FF现场总线等。 3、流速、满度流量、范围度和口径 选定仪表口径不一定与管径相同,应视流量而定。流程工业输送水等粘度不同的液体,管道流速一般是经济流速1.5~3m/s。EMF用在这样的管道上,传感器口径与管径相同即可。 EMF满度流量时液体流速可在1~10m/s范围内选用,范围是比较宽的。上限流速在原理上是不受限制的,然而通常建议不超过5m/s,除非衬里材料能承受液流冲刷,实际应用很少超过7m/s,超过10m/s则更为罕见。满度流量的流速下限一般为1m/s,有些型号仪表则为0.5m/s。 有些新建工程运行初期流量偏低或在流速偏低的管系,从测量精度角度考虑,仪表口径应改用小于管径,以异径管连接之。用于有易粘附、沉积、结垢等物质的流体,选用流速不低于2m/s,最好提高到3~4m/s或以上,起到自清扫、防止粘附沉积等作用。用于矿浆等磨耗性强的流体,常用流速应低于2~3m/s ,以降低对衬里和电极的磨损。 在测量接近阈值的低电导液体,尽可能选定较低流速(小于0.5~1m/s),因流速提高流动噪声会增加,而出现输出晃动现象。 EMF的范围度是比较大的,通常不低于20,带有量程自动切换功能的仪表,可超过50~100。国内可以提供的定型产品的口径从10mm到3000mm,随然实际应用还是以中小口径居多,但与大部分其他原理流量仪表(如容积式、涡轮式、涡街式或科里奥利质量式等)相比,大口径仪表占有较大比重。 4、液体电导率 使用EMF的前提是被测液体必须是导电的,不能低于阈值(即下限值)。电导率低于阈值会产生测量误差直至不能使用,超过阈值即使变化也可以测量,示值误差变化不大,通用型EMF的阈值在10-4~(5×10-6)S/cm之间,视型号而异。使用时还取决于传感器和转换器间流量信号线长度及其分布电容,制造厂使用说明书中通常规定电导率相对应的信号线长度。非接触电容耦合大面积电极的仪表则可测电导率低至5×10-8S/cm的液体。 工业用水及其水溶液的电导率大于10-4S/cm,酸、碱、盐液的电导率在10-4~10-1S/cm之间,使用不存在问题,低度蒸馏水为10-5S/cm也不存在问题。石油制品和有机溶剂电导率过低就不能使用。表1列出若干液体的电导率。从资料上查到有些纯液或水溶液电导率较低,认为不能使用,然而实际工作中会遇到因含有杂质而能使用的实例,这类杂质对增加电导率有利。对于水溶液,资料中的电导率是用纯水配比在实验室测得的,实际使用的水溶液可能用工业用水配比,电导率将比查得的要高,也有利于流量测量。 根据使用经验,实际应用的液体电导率最好要比仪表制造厂规定的阈值至少大一个数量级。因为制造厂仪表规范规定的下限值是在各种使用条件较好状态下可测量的最低值。是受到一些使用条件限制,如电导率均匀性、连接信号线、外界噪声等,否则会出现输出晃动现象等。我们就多次遇到测量低度蒸馏水或去离子水,其电导率接近阈值5×10-6S/cm,使用时出现输出晃动。 5、液体中含有混入物 混入成泡状流的微小气泡仍可正常工作,但测得的是含气泡体积的混合体积流量;如气体含量增加到形成弹(块)状流,因电极可能被气体盖住使电路瞬时断开,出现输出晃动甚至不能正常工作。含有非铁磁性颗粒或纤维的固液双相流体同样可测得二相的体积流量。固体含量较高的流体,如钻井泥浆、钻探固井水泥浆、纸浆等实际上已属非牛顿流体。由于固体在载体液中一起流动,两者之间有滑动,速度上有差别,单相液体校验的仪表用于固液双相流体会产生附加误差。虽然还未见到EMF应用于固液双相流体中固形物影响的系统实验报告,但国外有报告称固形物含量有14%时误差在3%范围以内; 我国黄河水利委员会水利科学研究所的实验报告称,测量高沙含量水的流量,含沙量体积比17%~40%(沙中值粒径0.35mm),仪表测量误差小于3%。 在浆液内有较大颗粒擦过电极表面,在频率较低的矩形激磁的EMF中会产生尖峰状浆液噪声,使流量信号不稳,就要选用较高频率的仪表或有较强抑制浆液噪声能力的仪表,也可选用市电交流激磁的仪表或双频激磁的仪表。 含有铁磁性物质的流体对通常的EMF,因测量管内磁导率受铁磁体的不同含量而变化,会产生测量误差。但在磁路中置有磁通检测线圈补偿的EMF,可减小混入铁磁体的影响。 对含有矿石颗粒的矿浆应用,应注意对传感器衬里的磨损程度,测量管内径扩大会产生附加误差。这种场合应选用耐磨性较好的陶瓷衬里或聚氨酯橡胶衬里,同时建议传感器安装在垂直管道上,使管道磨损均匀,消除水平安装下半部局部磨损严重的缺点。也可以在传感器进口端加装喷嘴形护套,相对延长使用期。 6 、附着和沉淀 测量易在管壁附着和沉淀物质的流体时,若附着的是比液体电导率高的导电物质,信号电势将被短路而不能工作,若是非导电层则首先应注意电极的污染,譬如选用不易附着尖形或半球形突出电极、可更换式电极、刮刀式清垢电极等。刮刀式电极可在传感器外定期手动刮出沉垢。国外产品曾有电极上装超声波换能器,以清除表面垢层,但现已少见。也有暂时断开测量电路,在电极简短时间内流过低压大电流,焚烧清除附着油脂类附着层。易产生附着的场所可提高流速以达到自清扫的目的,还可以采取较方便的易清洗的管道连接,可不拆卸清洗传感器。 非接触型电极 EMF附着非导电膜层,仪表仍能工作,但若为高导电层则同样不能工作。 7、与流体接触零部件材料的选择 与流体接触的传感器零部件有衬里(或绝缘材料制成的测量管)、电极接地环和密封垫片,其材料的耐腐蚀性、耐磨耗性和使用温度上限等影响仪表对流体的适应性。由于零部件少,形状简单,材料选择灵活,电磁流量传感器对流体的适应性强。 (1) 衬里材料(或直接与介质接触的测量管)常用衬里材料有氟塑料、聚氨酯橡胶、氯丁橡胶和陶瓷等。近年有采用高纯氧化铝999.7%AI2O3)陶瓷制成衬里的,但只限中小口径传感器。 氯丁橡胶和玻璃钢用于非腐蚀性或弱腐蚀性液体,如工业用水、废污水及弱酸碱,价格最为低廉。氟塑料具有优良的耐化学腐蚀性,但耐磨性差,不能用于测量矿浆液。氟塑料中最早应用的是聚四氟乙烯,因与测量管间仅靠压贴,无粘结力,不能用于负压管道,后开发各种改性品种,实现注塑成形,与测量管有较强结合力,可用于负压, 聚氨酯橡胶有极好的耐磨耗性,但耐酸碱的腐蚀性较差。它的耐磨性相当于天然橡胶的10倍,适用于煤浆、矿浆等;介质温度要低于40~60/70℃。氧化铝陶瓷有极好的耐磨耗性和对强酸碱的耐磨腐蚀性,耐磨性约为聚氨酯橡胶的10倍,适用于具有腐蚀性的矿浆;但性脆,安装夹紧时疏忽易碎,可用于较高温度(120~140/180℃)但要防止温度剧变,如通蒸汽灭菌,一般温度突变不能大于100℃,升温150℃…

Read More

选择滑台模组需要考虑哪些因素?

滑台模组在自动化领域的发展相当迅速,且各方面的功能都很齐全稳定。 。选择滑台的因数有几种,在选择滑台模组的时候首先要合理的综合考虑多种因素,才能确保以后在使用中正常工作! 1.导向精度以及模组和支承件的热变形等。导向精度是指运动构件沿导轨导面运动时其运动轨迹的准确水平。影响导向精度的主要因素有导轨承导面的几何精度、导轨的结构类型、导轨副的接触精度、外表粗糙度、导轨和支承件的刚度、导轨副的油膜厚度及油膜刚度。直线运动导轨的几何精度一般包括:垂直平面和水平平面内的直线度;两条导轨面间的平行度。导轨几何精度可以用导轨全长上的误差或单位长度上的误差表示。 2.运动平稳性:是指导轨在低速运动或微量移动时不出现爬行现象的性能。平稳性与导轨的结构、导轨副材料的匹配、润滑状况、润滑剂性质及导轨运动之传动系统的刚度等因素有关。 3.抗振性与稳定性:是指在给定的运转条件下不出现自激振动的性能;而抗振性则是指模组副接受受迫振动和冲击的能力。 4.精度坚持性:是指工作过程中保持原有几何精度的能力。精度坚持性主要取决于导轨的耐磨性极其尺寸稳定性。耐磨性与导轨副的资料匹配、受力、加工精度、润滑方式和防护装置的性能的因素有关。导轨及其支承件内的剩余应力也会影响导轨的精度坚持性。 5.刚度对于精密机械与仪器尤为重要。变形包括导轨本体变形导轨副接触变形,导轨抵抗受力变形的能力。变形将影响构件之间的相对位置和导向精度。两者均应考虑 6.运动灵敏度和定位精度直线导轨运动灵敏度是指运动构件能实现的最小行程;定位精度是指运动构件能按要求停止在指定位置的能力。运动灵敏度和定位精度与导轨类型、摩擦特性、运动速度、传动刚度、运动构件质量等因素有关。 滑台模组自动化发展的到来给企业带来了巨大的影响,经济和效益都得到了良好的提升。

机床丝杆分类及其应用

滚动丝杠可分为滚珠丝杠和滚柱丝杠两大类。滚珠丝杠与滚柱丝杠相比而言,摩擦力小,传动效率高,精度也更高。 丝杠是细长柔性轴,它的长度L与直径D的比值较大,一般为20~50,刚性较差。结构形状复杂,有很高的螺纹表面要求,还有阶梯、沟槽等,所以在加工过程中易出现变形。静压丝杠有许多的优点,常被用于精密机床和数控机床的进给机构中。其螺纹牙形与标准梯形螺纹牙形相同。但牙形高于同规格标准螺纹1.5~2倍,目的在于获得良好油封及提高承载能力。 一、丝杠工作条件以及材料 丝杠工作条件以及材料与热处理要求: 1.条件:≥7级精度受力不大轴颈方头等处均不需淬硬如车床走刀丝杠。 要求:45Mn易切削钢和45热轧后σb=600-750N/mm^2除应力HB170-207。 2.条件:≥6级精度要求耐耐磨、尺寸稳定但负荷不大如螺纹磨床、齿轮磨床等高精度传动丝杠。 要求:9Mn2V(直径≤60mm)、CrWMn(直径>60mm)球化退火后球状珠光体5-4级网状碳化物≤3级硬度≤HB227淬火硬度HRC56 0.5。 3.条件:7-8级精度受力较大如各类大型镗床、龙门铣和刨床等的走刀和传动丝杠。 要求:40Cr、42MnVB、(65Mn)调质HB220-250σb≥850N/mm^2;方头、轴颈局部淬硬HRC42。 4.条件:≥6级精度受点负荷的如螺纹或齿轮磨床、各类数控机床的滚珠丝杠。 要求:GCr15(直径≤70mm0)、GCr15SiMn(直径>80mm)球化退火后球状珠光体1.5-4级网状碳化物≤3级HRC60-62。 5.条件:8级精度中等负荷要求耐磨如平面磨床砂轮架升降丝杠与滚动螺线啮合。 要求:40Cr、42MnVB调质HB250中频表淬HRC54。 6.条件:≥6级精度要求抗腐蚀、较高的抗疲惫性和尺寸稳定性.如样板镗床或其他特种机床精密丝杠。 要求:38CrMoAlA调质HB280渗氮HV850调质后基体组织均匀的索氏体渗氮前表面应无脱碳层。 7.条件:≥6级精度要求具有一定耐磨性尺寸稳定性较高强度和较好的切削加工性如丝杠车床齿轮机床、坐标镗床等的丝杠。 要求:T10、T10A、T12、T12A球化退火HB163-193球化等级3-5级网状碳化物≤3级调质HB201-229。 二、丝杠的组成和应用特点 丝杠由螺杆、螺母和滚珠三部分组成,在使用中发挥重要的作用和价值。丝杠具有良好的工作原理和功能,它的功能是将旋转运动转化成直线运动,这是滚珠螺丝的进一步延伸和发展,这项发展的重要意义就是将轴承从滚动动作变成滑动动作。丝杠的发展是滚珠螺丝的发展壮大和进步,促进中国技术的提高和进步,保证中国在设备和技术行业的进步、发展技术。由于具有很小的摩擦阻力,丝杠被广泛应用于各种工业设备和精密仪器,在行业中发挥重要的作用和价值。丝杠是工具机和精密机械上最常使用的传动元件,其主要功能是将扭矩转换成轴向反覆作用力,同时兼具高精度、可逆性和高效率的特点。丝杠良好的产品特点和性能促使其在不断的使用和发展,在不同的行业中发挥重要的作用和价值,不断的在同行业中发挥作用。 丝杠具有良好的产品特点,具体表现在以下方面: 1.与滑动丝杠相比,丝杠的驱动力矩为1/3.由于丝杠的丝杠轴与丝母之间有很多滚珠在做滚动运动,所以能得到较高的运动效率。与过去的滑动丝杠副相比驱动力矩达到1/3以下,即达到同样运动结果所需的动力为使用滚动丝杠副的1/3.在省电方面很有帮助。 2.无侧隙、刚性高的丝杠可以加予压,由于予压力可使轴向间隙达到负值,进而得到较高的刚性(丝杠内通过给滚珠加予压力,在实际用于机械装置等时,由于滚珠的斥力可使丝母部的刚性增强)。 3.微进给可能,丝杠由于是利用滚珠运动,所以启动力矩极小,不会出现滑动运动那样的爬行现象,能保证实现精确的微进给。 4.高精度的保证,丝杠是用日本制造的世界最高水平的机械设备连贯生产出来的,特别是在研削、组装、检查各工序的工厂环境方面。对温度·湿度进行了严格的控制,由于完善的品质管理体制使精度得到充分保证。 5、高速进给可能,丝杠由于运动效率高、发热小、所以可实现高速运动,展现高速的运动功能。 四、丝杠的工艺精度和硬度测试 在非标设备和夹具中,长丝杠被广泛应用,为了提高丝杠的使用寿命,广泛采用淬硬丝杠,这种丝杠以磨为主,精度靠螺纹磨床磨削来保证。65Mn材料的丝杠采用的热处理工艺为淬火、回火、冰冷处理、回火。丝杠在粗磨(粗车)后须进行高温时效,半精磨(精车)后应采取低温时效,以消除机加工过程中产生的应力,提高丝杠的稳定性。在螺纹磨床上加工螺纹,是目前螺纹加工中获取高精度、低表面粗糙度最常用的切削方法,随着高精度淬硬螺纹零件的广泛应用,磨削加工螺纹的优越性得到充分体现。在现实生产中,为了获得较高精度和表面质量的丝杠,有必要对其磨削工艺进行深入探讨。 丝杠的工艺基准是两端的中心孔,中心孔一般应采用B型中心孔,它可以防止端面碰伤而影响中心孔的精度,同时中心孔的硬度应达到6O~65HRC,中心孔的精度是保证丝杠精度的关键,在粗磨、精磨工序前即淬火、时效后必须安排中心孔修研工序。中心孔与顶尖的接触面积在粗磨时要求为75%,精磨时要求达到80%以上。研磨时对丝杠的轴向压力不可过大,以免丝杠变形。这里选用的修研方法是在机床上用六棱硬质合金顶尖刮研,它的刃带有微量切削作用和挤光作用,能修正中心孔的几何形状误差,且效率高,工具寿命长,粗糙度可达Ra0.8μm。 丝杠材料直接影响加工工艺及热处理后工件的机械性能。因此高精度长丝杠的制造中一个很重要的问题就是合理选择材料,通常可从合金工具钢、合金结构钢、碳素工具钢中选择。丝杠在热处理过程中应注意避免产生弯曲变形,尽量不采用校直工序,必要时也只能采用热校直。因为在常温下校直的丝杠,虽然短时间内看起来已校直,但第2天或者经过磨削加工又会产生弯曲变形。 五、精密丝杠使用不容忽视问题 精密丝杠是精密机床、数控机床及其它精密机械与仪器的重要传动装置。为减小残余应力的影响,丝杠毛坯须经球化退火处理,以获得稳定的球状珠光体组织;丝杠热变形的计算通常需要根据实际加工情况建立温度分布数学模型,但实际加工情况的复杂性增加了数学建模难度。而基于能量守恒定律,采用平均线膨胀系数进行计算,则只需考虑热量含量相同的任一温度分布状况的热变形计算,可在保持原有精度的前提下大大简化数学模型,使丝杠热变形的计算变得简洁、方便。 磨削加工丝杠时所产生的磨削热约有60%~95%被传入被磨丝杠中。由于磨削速度极高,热量瞬间聚集在丝杠表面形成局部高温,随着砂轮沿丝杠轴向进给,热量向丝杠两端及内部传导,同时与丝杠表面的冷却介质发生对流换热。因此,丝杠磨削加工时的热量传播方式主要包括磨削表面所需表面能、残留于表面和磨屑中的应变能、砂轮的温升、丝杠内部的热传导、丝杠与冷却介质的对流换热等。 在精密丝杠使用一段时间后,因残余应力释放引起的丝杠变形误差也不容忽视,为此必须对磨削加工引起的残余应力分布状况进行精确计算,并据此进行误差补偿。目前对磨削残余应力的研究多集中于对实验数据的分析,而从理论上确定磨削加工残余应力分布状况则是今后需要深入研究且具有应用价值的工作。为提高丝杠加工系统刚度,需采用高同轴度的跟刀架或导套等辅助支承。精密丝杠的热变形主要源于砂轮磨削加工产生的环状移动热源在丝杠上产生温度分布引起的热膨胀,因此在热变形数学建模中需考虑的因素有:磨削热形成的热源特征、热源的移动性、热量沿杆件的传导特征、热量的散热特征等。此外,加工后的残余应力对丝杠尺寸的影响也不容忽视。 六、旋转伺服电机+滚珠丝杠的驱动方式 随着直接驱动技术的发展,直线电机与传统的”旋转伺服电机+滚珠丝杠”的驱动方式的对比引起业界的关注。滚珠丝杠在使用方式中可能存在椅子质量性能方面的问题,需要根据市场情况和标准使用,得到良好的使用趋势。 1845年英国人就已经发明了直线电动机,但当时的直线电动机气隙过大导致效率很低,无法应用。19世纪70年代科尔摩根也推出过,但因成本高效率低限制了它的发展。直到20世纪70年代以后,直线电机才逐步发展并应用于一些特殊领域,20世纪90年代直线电机开始应用于机械制造业,现在世界一些技术先进的加工中心厂家开始在其高速机床上应用。 速度比较: 速度方面直线电机具有相当大的优势,直线电机速度达到300m/min,加速度达到10g;滚珠丝杠速度为120m/min,加速度为1.5g。从速度上和加速度的对比上,直线电机具有相当大的优势,而且直线电机在成功解决发热问题后速度还会进一步提高,而”旋转伺服电机+滚珠丝杠”在速度上却受到限制很难再提高较多。

如何选择直线模组滑台?

当前的各行各业,涉及到自动运行的场合中,业界普遍观察到,使用直线滑台模组的数量和品种快速增加。与以前老式的机械手相对比,堪称超值的直线滑台模组体在实际使用上,不但性能好,而且维护的便利性也相当令人满意,具备明显的优势。其使用已经超越了工业制造设备外,甚至在医疗器械甚至模拟飞行器手臂等方面,也日渐普及。 目前国内专业的直线滑台模组产品,都具备了以下的优势: 1、直线滑台模组具有便于维护、工作稳定性高、重量轻的优点。 2、因为设备运行精度高,不需要使用气缸组件,其使用过程中的噪音和震动的控制,都达到了很高的水平。 3、针对使用环境中产生腐蚀的因素,也都做了专门处理。 用户在选择合适的产品时,要考虑直线滑台模组怎样才能最大限度满足本企业的运行要求。 第一,对工作环境中,直线滑台模组需要承担的负荷是重点考虑的内容。例如,若预计到工作中的负载较大的情况下,就应该考虑使用滚珠丝杆的传动方式。滚珠丝杆传动可实现更高的负荷,并且运行中的噪音、震动更低。 第二,应对设备往复运动的精度要求,做到心中有数。多次往复运行后,设备复位后与原点的距离,这个参数反应了设备的精度。精度参数直接影响生产运行的结果,因此在选择直线滑台模组时这是必须重点考虑的。为了增加精度,还可以选择加载光栅尺磁栅尺等定位装置。如果是需要考虑热膨胀系数因素的场合,磁栅尺更适合,而且更加对粉尘、油污场合耐受性更强。 第三,对设备运行的行程要充分考虑,一般来说,国内专业的直线滑台模组都会比实际行程需求预留多一定的余量。这是为工作环境的变化留出空间,因为使用场合的需求和环境将来有可能出现不同,选择直线滑台模组设备时,要为此做出准备。 社会各方面有自动化运行要求的场合,都在关注线性滑台模组的应用。掌握专业知识,并且根据自身使用的具体要求,对使用场合中的精度、速度、行程空间等各方面做出详细规划。并据此去选择厂家信誉好的直线滑台模组,就能为使用单位实现高速度、高精度的生产运行。尤其是在对安全可靠方面要求高的场合,更能实现高效益。

购买模组滑台有哪些注意事项?

在工业自动化进程中,专业的模组滑台独具特色的生产方式、生产潜力得到了使用者一致认可,市场上对其需求量也在加大,但是,目前市场上模组滑台产品种类众多,品质不一,消费者面临一定的选择困扰,因此小编就给大家介绍一下在购买模组滑台的注意事项。 1、注意模组滑台的精度坚持性 这里的精度坚持性是在具体的执行过程中,模组滑台保留原来的几何精度的最基本的能力,这种能力和尺寸的稳定性、导轨的耐磨性有巨大的关系。因此,在购买模组滑台产品时,一定要注意其精度的坚持性,否则在实际的操作过程中,很容易造成产品精度不准确。 2、注意模组滑台的导向精度 这里的导向精度指的是在导面运动的过程中,模组滑台的运动轨迹的精准水平,综合各方面来说,影响最大的因素是油膜所持有的刚度,另外,外表毛糙的程度、几何精度性也会有一定的影响。因此,在购买模组滑台的时候一定要对它的导向精度有准确的了解,同时,也要考虑到导轨表面的几何精度性。 3、注意模组滑台的抗震性 这里所说的抗振性指的是模组滑台承受冲击能力、震动能力。模组滑台一定要具有很好的抗振性,因为如果模组滑台没有很好的抗振性,很容易把产品的基本性能破坏掉,生产出来的产品质量将会大打折扣。 大家只要注意这三点事项基本上就可以购买到一款性价比高的模组滑台。当然,在实际的购买过程中,还需要结合自己的实际需要,及产品的规格、类型、结构特点等等,只有结合各方面的因素,大家才能购买到最适合自己的模组滑台。

滚珠丝杆的安装步骤有哪些?

滚珠丝杠由螺杆、螺母、钢球、预压片、反向器、防尘器组成。它的功能是将旋转运动转化成直线运动,这是艾克姆螺杆的进一步延伸和发展,这项发展的重要意义就是将轴承从滑动动作变成滚动动作。由于具有很小的摩擦阻力,滚珠丝杠被广泛应用于各种工业设备和精密仪器。滚珠丝杠是工具机和精密机械上最常使用的传动元件,其主要功能是将旋转运动转换成线性运动,或将扭矩转换成轴向反复作用力,同时兼具高精度、可逆性和高效率的特点。 1.支撑座侧支撑单元的安装: >01丝杆轴插入单列轴承后,用止推环固定。 >02用止推环固定后,将轴承插入支撑座内。 >03安装精度参考值: 偏心         倾斜     有间隙时:   20-30μm     1/2000max     预压式螺母: 15-25μm    1/3000max     有高精度要求: 10μm以下 1/5000max   2.滚珠丝杠往工作台和底座上安装: >01 先调整到安装精度参考值以内。 >02以固定侧支撑单元为基准时,请将螺母外径与工作台螺母支座内径调整至保持一定的间隙状态。 >03以工作台为基准时,对于方形支撑单元使用薄垫片调整中心高度,对于法兰型支撑单元要将螺母外径与工作台螺母制作内径调整至保持一定间隙的状态。 图3.往工作台及底座上安装: >01将滚珠丝杆螺母插入螺母支座后临时紧锁。(将螺母放置在滚珠丝杆轴的中间位置) >02将固定侧和支撑侧的支撑单元临时固定到基座上。 >03移动工作台与固定侧支撑单元后,将支撑单元拧紧固定到基座上。 >04固定好后,将工作台移动至靠近固定侧的行程尽头附近,并将工作台和螺母支座相互固定。 >05固定好螺母和螺母支座。 >06将第4步中固定的螺栓松开,再次将工作台和螺母支座相互固定。推动工作台至固定支撑单元处调整其中心位置,使工作台能顺畅移动,对于精密工作台还需要将丝杆轴调整到与LM导轨平行的位置。 >07固定好后,确认工作台的运行状态,将工作台移动至支撑座。 >08移动工作台至支撑侧支撑单元后,将拧紧支撑单元的固定螺栓。 >09固定好后,将工作台移动至靠近支撑侧的行程尽头附近,并再次将工作台和螺母支座松开后相互固定。 >10将工作台移动到固定侧,左右移动,确认运行状态。往返移动多次将工作台调整到再全行程内都能顺畅运行的状态。 >11如果与运行中发生异响,阻塞的现象,请重复3-10的工序。 4.确认精度和完全拧紧螺栓: >01使用千分表确认丝杆轴端外径部分的跳动、轴方向的间隙。 >02依次完全拧紧螺母、螺母支座、固定侧支撑单元、支撑座固定单元各处的螺栓。 5.连接电机: >01将电机支座安装在基座上。 >02用轴器连接电机和滚珠丝杆。 >03充分的试运行。