滚珠丝杆与梯形丝杆的同和异

滚珠丝杠和梯形丝杠之间的主要区别是在移动表面之间承载负载的方式。滚珠丝杠采用循环滚珠轴承,以便最大限度减小摩擦和提高效率,而梯形丝杠则要利用滑动表面之间的低摩擦系数。因此,梯形丝杠一般达不到滚珠丝杠的效率(90%左右)。简单分析摩擦学机制(研究磨损和摩擦)可以发现:滑动摩擦的可预测性必然低于采用循环滚珠技术的传动。疲劳寿命方程(比如L10寿命)在其适用范围内非常可靠。综上,滚珠丝杠和梯形丝杠因为预测性能和寿命的能力存在差异,所以其应用领域也有根本的区别。 虽然滚珠丝杠有着种种优势(负载、刚度、效率、负载循环、可预测性),但是其成本较高。虽然与其它平移直线运动方案相比,它们的性价比很高,但是滚珠丝杠的设计更复杂,需要经过硬化处理的精密轴承表面以及一个滚珠循环装置。而梯形丝杠的尺寸很小,设计起来很灵活,在正确使用的情况下噪音很小,耐腐蚀性能好,可以为了满足垂直应用需求而配置自锁功能。它们在很多应用领域发挥着重要作用,当然本身也有一些限制。 滚珠丝杠和梯形丝杠在很多情况下不能互换,总是需要在精度、刚度和负载容量之间进行权衡。我还听说规格和性能之间不一定完全对应。

液压系统漏油的排除方法

液压系漏油有外漏和内漏2种情况。外漏主要是油管破裂、接头松动、紧固不严密等情况等造成的;内漏主要是液压系内部的油泵、油缸、分配器等产生泄漏造成的.内漏的故障不易被发现,有时还需借助仪器进行检测和调整,才能排除。 1、油缸密封圈老化和损坏活塞杆锁紧螺母松动 (1)油缸活塞上的密封圈、活塞杆与活塞接合处的密封挡圈、定位阀密封圈损坏。处理方法是:更换密封圈和密封挡圈。但要注意,选用的密封圈表面应光滑;无皱纹、无裂缝、无气孔、无擦伤等。 (2)活塞杆锁紧螺母松动。处理方法是:拧紧活塞杆锁紧螺母。 (3)缸筒失圆严重时,可能导致油缸上下腔的液压油相通。处理方法:若失圆不太严重,可采取更换加大活塞密封圈的办法来恢复其密封性;若圆度、圆柱度误差超过0.05mm时,则应对缸筒进行珩磨加工,更换加大活塞,来恢复正常配合间隙。 2、分配器上的安全阀和回油阀关闭不严 (1)安全阀磨损或液压油过脏;球阀锈蚀,调节弹簧弹力不足或折断;液压油不合规格;液压油过稀或油温过高(液压油的正常温度应是30℃~60℃),都会使安全阀关闭不严。处理方法是:更换清洁的符合标准的液压油;更换规定长度和弹力的弹簧;更换球阀中的球,装入阀座后可敲击,使之与阀座贴合,并进行研磨。 (2)回油阀磨损严重或因液压油过脏而导致回油阀关闭不严。处理方法是:研磨锥面及互研阀座。若圆柱面严重磨损,可采取镀铬磨削的方法修复;若小圆柱面与导管磨损,造成内隙过大,可在导管内镶铜套,恢复配合间隙。清洗油缸,更换清洁的液压油。 滑阀与滑阀孔磨损,使间隙增大,油缸的油在活塞作用下从磨损的间隙处渗漏,流回油箱。处理方法是:镀铬后磨削修复,与滑阀孔选配。 3、齿轮油泵相关部位严重磨损或装配错误 (1)油泵齿轮与泵壳的配合间隙超过规定极限。处理方法是:更换泵壳或采用镶套法修复,保证油泵齿轮齿顶与壳体配合间隙在规定范围之内。 (2)齿轮轴套与齿轮端面过度磨损,使卸压密封圈预压缩量不足而失去密封作用,导致油泵高压油腔与低压油腔串通,内漏严重。处理方法是:在后轴套下面加补偿垫片(补偿垫片厚度一般不宜超过2mm),保证密封圈安放的压缩量。 (3)拆装油泵时,在2个轴套(螺旋油沟的轴套)结合面处,将导向钢丝装错方向。处理方法是:保证导向钢丝能同时将2个轴套按被动齿轮旋转方向偏转一个角度,使2个轴套平面贴合紧密。

常见的电磁阀有哪些分类?

按电磁阀内部结构不同可分为先导式、直动式、复合式、反冲式、自保持式、脉冲式、双稳态、双向型等。     按电磁阀的使用材质不同可分为:铸铁体(灰口铸铁、球墨铸铁)、铜体(铸铜、锻铜)、铸钢体、全不锈钢体(304、316)、非金属材料(ABS、聚四氟乙烯)。     按管道中介质的压力不同可分为:真空型(-0.1~0Mpa)、低压型(0~0.8Mpa)、中压型(1.0~2.5Mpa)、高压型(4.0~6.4Mpa)、超高压型(10~21Mpa)     按介质温度不同可分为:常温型、中温型、高温型、超高温型、低温型、超低温型。     按工作电压不同分为:交流电压:AC220V  380V  110V  24V;直流电压: DC24V  12V  6V  220V;一般常用电压为AC220V  DC24V,推荐用户尽量选用常用电压、特殊电压供货周期较长。     按电磁阀的防护等级可分为:防爆型、防水型、户外型等。 电磁阀分为单电控和双电控,指的是电磁线圈的个数,单线圈的称为单电控,双线圈的称为双电控,2位2通,2位3通一般时是单电控(单线圈),2位4通,2位5通可以是单电控(单线圈),也可以是双电控(双线圈)。按被控制管路内的介质及使用工况的不同可将电磁阀分为:液用电磁阀、气用电磁阀、蒸汽电磁阀、燃气电磁阀、油用电磁阀、消防专用电磁阀、制冷电磁阀、防腐电磁阀、高温电磁阀、高压电磁阀、无压差电磁阀、超低温电磁阀(深冷电磁阀)、真空电磁阀等。    

三种执行机构之间的区别

气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式和活塞式两类。活塞式行程长,适用于要求有较大推力的场合;而薄膜式行程较小,只能直接带动阀杆。由于气动执行机构有结构简单,输出推力大,动作平稳可靠,并且安全防爆等优点,在化工,炼油等对安全要求较高的生产过程中有广泛的应用。 液动执行器推力最大,现在一般都是机电一体化的,但比较笨重,所以现在很少使用,比如三峡的船阀用的就是液动执行器。 电动执行机构安全防爆性能差,电机动作不够迅速,且在行程受阻或阀杆被扎住时电机容易受损。尽管近年来电动执行器在不断改进并有扩大应用的趋势,但从总体上看不及气动执行机构应用得普遍。

气动控制阀的定义和分类

定义: 气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。 分类: 一、断续控制阀包含了压力控制阀、流量控制阀、方向控制阀以及射流逻辑元件四类。 1、控制和调节压缩空气压力的元件称为压力控制阀; 2、控制和调节压缩空气流量的元件称为流量控制阀; 3、改变和控制气流流动方向的元件称为方向控制阀; 4、在结构原理上,逻辑元件基本上和方向控制阀相同,仅仅是体积和通径较小,一般用来实现信号的逻辑运算功能。 二、连续控制阀分为: 1.伺服、比例压力阀 2.伺服、比例流量阀 3.伺服、比例方向阀 4.射流比例阀。

减压阀相关的知识

减压阀按结构形式可分为薄膜式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可人为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式。 减压阀的安装和维护应注意以下事项: 为了操作和维护方便,该阀一般直立安装在水平管道上。 安装时应注意使管路中介质的流向与阀休上所示箭头的方向一致。 为了防止阀后压力超压,应在离阀出口不少于4M处安装一个减压阀。 背压阀一般用途 1.用于防止液体在重力作用下自流(或虹吸),这时候一般选用大于液体自身压力即可,如防止液位为2米药箱中的液体自流,可选用压力大于0.02MPa的背压阀,一般选用0.1MPa即可。 2.用于稳定泵的流量,如某些泵的流量随压力变化较大,可在泵的出口处设置背压阀,使泵的输出流量稳定,这时一般选择背压阀的压力为泵的实际使用压力或略小于泵的使用压力。 出口管道上的单向阀用于防止液体回流,背压阀用于保持泵出口有一恒定压力。 由于计量泵的往复运动,驱动部分有一定的撞击声属正常现象,GB/T7782-1996《计量泵》规定在距泵1米处的噪音不在于75分贝(当然越小越好),但如你所说的声音异常,可能有以下原因1.泵使用压力超出泵的额定压力(管道上的单向阀不畅通时可能出现此现象,可以在计量泵出口至单向阀前安装一压力表检查计量泵出口压力)。2.蜗杆轴承损坏。3.由于零件磨损导致安装隙增大。

电磁阀有哪些分类?

首先, 国内外的电磁阀从原理上分为三大类:直动式、分步直动式、先导式。 其次,从各个方面分类它又可以分为以下7种: 一、按被控制管路内的介质及使用工况的不同可将电磁阀分为:液用电磁阀、气用电磁阀、蒸汽电磁阀、燃气电磁阀、油用电磁阀、消防专用电磁阀、制冷电磁阀、防腐电磁阀、高温电磁阀、高压电磁阀、无压差电磁阀、超低温电磁阀。 二、按电磁阀内部结构不同可分为先导式、直动式、复合式、反冲式、自保持式、脉冲式、双稳态、双向型等。 三、按电磁阀的使用材质不同可分为:铸铁体(灰口铸铁、球墨铸铁)、铜体(铸铜、锻铜)、铸钢体、全不锈钢体(304、316)、非金属材料(ABS、聚四氟乙烯)。     四、按管道中介质的压力不同可分为:真空型(-0.1~0Mpa)、低压型(0~0.8Mpa)、中压型(1.0~2.5Mpa)、高压型(4.0~6.4Mpa)、超高压型(10~21Mpa)     五、按介质温度不同可分为:常温型、中温型、高温型、超高温型、低温型、超低温型。     六、按工作电压不同分为:交流电压:AC220V  380V  110V  24V;直流电压: DC24V  12V  6V  220V;一般常用电压为AC220V  DC24V,推荐用户尽量选用常用电压、特殊电压供货周期较长。     七、按电磁阀的防护等级可分为:防爆型、防水型、户外型等。 电磁阀分为单电控和双电控,指的是电磁线圈的个数,单线圈的称为单电控,双线圈的称为双电控,2位2通,2位3通一般时是单电控(单线圈),2位4通,2位5通可以是单电控(单线圈),也可以是双电控(双线圈)。  

电磁阀按性质区分的相关知识

1.经济性:不经济就是对资金,精力乃至生命的浪费 它选用的尺度之一,但必须是在安全、适用、可靠的基础上的 经济。 经济性不单是产品的售价,更要优先考虑其功能和质量以及安装维修及其它附件所需用费用。 更重要的是,一只电磁阀在整个自控系统中在整个自控系统中乃至生产线中所占成本微乎其微,如果贪图小便宜而错选早造成损害群是巨大的。 2. 适用性:不适用等于花钱买费物,还要添麻烦! 1.介质特性 1.1质气,液态或混合状态分别选用不同品种的电磁阀,例ZQDF用于空气,ZQDF—Y用于液体, ZQDF—2(或-3)用于蒸汽,否则易引起误动作。ZDF系列多功能电磁阀则可通通于气.液体。最好订时告明介质状态,安装用户就不必再调式。 1.2介质温度不同规格产品,否则线圈会烧掉,密封件老化,严重影响寿命命。 1.3介质粘度,通常在50cSt以下。若超过此值,通径大于15mm用ZDF系列多功能电磁阀作特殊订货。通径小于15mm订高粘度电磁阀。 1.4介质清洁度不高时都应在电磁阀前配装反冲过滤阀,压力低时尚可选用直动膜片式电磁阀作例如CD—P。 1.5介质若是定向流通,且不允许倒流ZDF—N和ZQDF—N单需用双向流通,请作特殊要求提出。 1.6介质温度应选在电磁阀允许范围之内。 2.管道参数 2.1根据介质流向要求及管道连接方式选择阀门通口及型号。例如,用于一条管道向两条管道切换的,小通径的选CA5和Z3F,中等或大通径请选ZDF—Z1/2。又如控制两条管道汇流的,请选ZDF—Z2/1等。 2.2根据流量和阀门Kv值选定公称通径,也可选同管道内径。请注意有的厂家未标有Kv值,往往阀孔尺寸小于接口管径,切不可贪图价低而误事。 2.3工作压差 最低工作压差在0.04Mpa以上是可选用间接先导式;最低工作压差接近或小于零的必须选用直动式或分步直接式。 3.环境条件 3.1环境的最高和最低温度应选在允许范围之内,如有超差需作特殊订货提出。 3.2环境中相对湿度高及有水滴雨淋等场合,应选防水电磁阀 3.3环境中经常有振动,颠簸和冲击等场合应选特殊品种,例如船用电磁阀。 3.4在有腐蚀性或爆炸性环境中的使用应优先根据安全性要求选用耐发蚀 3.5环境空间若受限制,请选用多功能电磁阀,因其省去了旁路及三只手动阀且便于在线维修。 4.电源条件 4. 1根据供电电源种类,分别选用交流和直流电磁阀。一般来说交流电源取用方便。 4.2电压规格用尽量优先选用AC220V.DC24V。 4.3电源电压波动通常交流选用 %.-15%,直流允许±左右,如若超差,须采取稳压措施或提出特殊订货要求。 4.4应根据电源容量选择额定电流和消耗功率。须注意交流起动时VA值较高,在容量不足时应优先选用间接导式电磁阀。 5.控制精度 5.1普通电磁阀只有开、关两个位置,在控制精度要求高和参数要求平稳时请选用多位电磁阀;Z3CF三位常开电磁阀,具有微启,全开和关闭三种流量; ZDF—Z1/1组合多功能电磁阀具有全开、大开、小开、全开四种流量。 5.2动作时间:指电信号接通或切断至主阀动作完成时间,只有本公司专利产品多功能电磁阀可对开启和关闭时间分别调节,不仅可满足控制精度要求,还可防止水锤破坏。 5.3泄漏量 样本上给出的泄漏量数值为常用经济等级,若嫌偏高,请作特殊订货。

无杆气缸的使用技巧有哪些?

无杆气缸使用的技巧有哪些: 1、线性范围 角度传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。 但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。 2、稳定性 传感器使用一段时间后,其性能保持不变化的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。 另外,在选择角度传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。 3、频率响应特性 角度传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。 传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。

液压缸低速爬行的解决办法

液压缸的活塞杆在油压的作用下伸出或缩回时,经常出现速度不均匀现象,并有时伴有振动和异响,从而引起整个液压系统的振动,并带动主机其它部件振动,在主机调试过程中经常出现,有时速度快了,这种现象会减轻。除因液压系统管路引起这种现象以外,液压缸自身产生的振动也经常引发此类现象。 解决办法 1.液压缸内导向元件摩擦力不均匀产生的低速爬行,建议优先采用金属作为导向支撑,如QT500-7、ZQAL9-4等,如采用非金属支撑环,建议选用在油液中尺寸稳定性好的非金属支撑环,特别是热膨胀系数应小,另外对支撑环的厚度,必须严格控制尺寸公差和厚度的均匀性。 2.对于密封件材质问题引起的液压缸低速爬行,建议在工况允许的条件下,优先采用以聚四氟乙烯作为密封的组合密封圈,如常用的格莱圈、斯特封等等;如选唇口密封,建议材料优选丁晴橡胶或类似材料的密封件,其跟随性较好。 3.零部件加工精度的影响问题,在液压缸的制造过程中应严格控制缸体内壁和活塞杆表面加工精度,特别是几何精度,尤其直线度是关键,在国内加工工艺中,活塞杆表面的加工基本上是车后磨削,保证直线度问题不大,但对于缸体内壁的加工,其加工方法很多,有镗削—滚压、镗削—珩磨、直接珩磨等,但由于国内材料的基础水平较国外有差距,管材坯料直线度差,壁厚不均匀、硬度不均匀等因素,往往直接影响缸体内壁加工后的直线度,因此建议采用镗削—滚压、镗削—珩磨工艺,如直接珩磨,则必须首先提高管材坯料的直线度。

气动技术相关的特点

气动技术的特点: 1、气动装置结构简单、轻便、安装维护简单。压力等级低,故使用安全。 2、工作介质是取之不尽的空气、空气本身不花钱。排气处理简单,不污染环境,成本低。 3、输出力以及工作速度的调节非常容易。气缸的动作速度一般为50~500mm/s,比液压和电气方式的动作速度快。 4、可靠性高,使用寿命长。电器元件的有效动作次数约为百万次,而SMC的一般电磁阀的寿命大于3000万次,小型阀超过2亿次。 5、利用空气的压缩性,可贮存能量,实现集中供气。可短时间释放能量,以获得间歇运动中的高速响应。可实现缓冲。对冲击负载和过负载有较强的适应能力。在一定条件下,可使气动装置有自保持能力。 6、全气动控制具有防火、防爆、防潮的能力。与液压方式相比,气动方式可在高温场合使用。 7、由于空气流动损失小,压缩空气可集中供应,远距离输送。

过滤器的选型原则

1、孔目数的选择: 主要考虑需拦截的杂质粒径,依据介质流程工艺要求而定。各种规格丝网可拦截的粒径尺寸查下表“滤网规格”。 2、过滤器材质: 过滤器的材质一般选择与所连接的工艺管道材质相同,对于不同的服役条件可考虑选择铸铁、碳钢、低合金钢或不锈钢材质的过滤器。 3、过滤器阻力损失计算 水用过滤器,在一般计算额定流速下,压力损失为0.52~1.2kpa 4、进出口通径: 原则上过滤器的进出口通径不应小于相配套的泵的进口通径,一般与进口管路口径一致。 5、公称压力: 按照过滤管路可能出现的最高压力确定过滤器的压力等级。

低温阀门相关的知识

阀门的相关参数: 1.压力等级:150、300、600Lb、900LB、1500LB(45MPa) 2.阀门通径:15~1200 mm ( 1/2~48″ )。 3.连结形式:法兰式、焊接式、螺纹。 4.阀门材料:LCB、LC3、CF8。 5.工作温度:-46℃、-101℃、 -196℃、-253℃ 6.适用介质:液化天然气、乙烯、丙烯等。 7.驱动方式:手动、伞齿轮传动、电动 。 阀门设计和选材时必须重点考虑的问题之一是阀门的工作温度。为了规范阀门主体材料的适宜工作温度, 从各种类型的阀门用钢和合金牌号的材料性能方面对我国石油化工、化工、化肥、电力及冶金等行业用的阀门主体材料的适宜工作温度及相关要求作出了明确的规定, 供阀门产品设计、制造及检验时用。

球阀的特点

球阀的使用非常广泛,使用品种和数量仍在继续扩大,并向高温、高压、大口经、高密封性、长寿命、优良的调节性能以及一阀多功能方向发展,其可靠性及其他性能指标均达到较高水平,并已部分取代闸阀、截止阀、节流阀。随着球阀的技术进步,在可以预见的短时见内,特别是在石油天然气管线上、炼油裂解装置上以及核工业上将有更广泛的应用。此外,在其他工业中的大中型口径、中低压力领域,球阀也将会成为主导的阀门类型之一。  球阀是本世纪50年代问世的一种阀门,在半个世纪的时间里,球阀已发展成为一种主要的阀类。球阀主要用于截断或接通介质,也可用于流体的调节与控制,V型球阀能够进行比较精确的流量调节与控制,而三通球阀则用于分配介质和改变介质的流向。 球阀它具有相同的旋转90度的动作,不同的是旋塞体是球体,有圆形通孔或通道通过其轴线。球阀在管路中主要用来做切断、分配和改变介质的流动方向,它只需要用旋转90度的操作和很小的转动力矩就能关闭严密。球阀最适宜做开关、切断阀使用,但近来的发展已将球阀设计成使它具有节流和控制流量之用,如V型球阀。球阀的主要特点是本身结构紧凑,密封可靠,结构简单,维修方便,密封面与球面常在闭合状态,不易被介质冲蚀,易于操作和维修,适用于水、溶剂、酸和天然气等一般工作介质,而且还适用于工作条件恶劣的介质,如氧气、过氧化氢、甲烷和乙烯等,在各行业得到广泛的应用。球阀阀体可以是整体的,也可以是组合式的。 球阀的球体是浮动的,在介质压力作用下,球体能产生一定的位移并紧压在出口端的密封面上,保证出口端密封。

气源处理元件相关的知识

1 过滤 1.1 过滤器和分离器 为了去除系统中压缩空气的有害物质,应提供过滤装置。 1.2 过滤精度 过滤精度应与元件要求和环境条件一致。 1.3 过滤器压力 1.3.1 压降 如果过滤器的性能变差会导致危险时,应明确指出这种恶化作用。在供方的技术规范中应限定通过过滤元件的最大压降。 1.3.2 波动 过滤器不宜安装在压力波动可能会影响其过滤效率的回路中。 1.4 维护保养措施 过滤器和分离器应能在不影响管路的情况下进行清洗和排水。因此,应采用可拆装或可更换滤芯的空气过滤器。如果过滤器滤芯的额定值有一种以上,应标明其额定值。 1.5 安装位置 过滤器和分离器尽可能安装在离被保护设备最近的地方。既要靠近,又应留有足够的空间,以便更换过滤器滤芯。 1.6 排水装置 宜采用排水装置排除过滤器和分离器析出的水分,最好采用自动排水型。必要时,应有防冻措施,以免冻坏。 2 压力调节 系统的压力应控制在其安全压力范围内,例如:使用调压阀来控制时,宜为自动调节型。 防止系统超压的最好方法是安装一个或多个压力溢流阀来控制系统各部分的压力,压力损失或临界压降应不会使人员受到伤害。 减压阀并不能用作安全的降压装置,即使它具有足够的降压能力,也决不应该是防止超压的唯一装置。应依据调压范围和空气流量来选用调压阀(见ISO6953-1) 3 润滑 3.1 润滑液 3.1.1 相容性 必要时,宜为系统推荐合适的润滑液。这种润滑液应与系统中所有的元件、合成橡胶、塑料管和软管相容润滑液不应注入任何不需润滑的元件之中,除非供方有特殊规定。 3.1.2 处理的预防措施 供方宜提供特定润滑液的危害性的详细资料。这类信息宜包括: a) 保健方面的要求; b) 毒性; c) 一旦起火,出现窒息的危险性; d) 生物降解能力: e) 处理的方法 3.2 油雾器 3.2.1 油雾器的使用 需要时,应使用油雾器向系统提供润滑。…

Read More

气动执行器的工作原理

当压缩空气从A管咀进入气动执行器时,气体推动双活塞向两端(缸盖端)直线运动,活塞上的齿条带动旋转轴上的齿轮逆时针方向转动90度, 阀门即被打开。此时气动执行阀两端的气体随B管咀排出。反之,当压缩空气从B官咀进入气动执行器的两端时,气体推动双塞向中间直线运动,活塞上的齿条带动旋转轴上的齿轮顺时针方向转动90度,阀门即被关闭。此时气动执行器中间的气体随A管咀排出。以上为标准型的传动原理。根据用户需求,气动执行器可装置成与标准型相反的传动原理,即选准轴顺时针方向转动为开启阀门,逆时针方向转动为关闭阀门。单作用(弹簧复位型)气动执行器A管咀为进气口,B管咀为排气孔(B管咀应安装消声器)。A管咀进气为开启阀门,断气时靠弹簧力关闭阀门。 气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式、活塞式、拨叉式和齿轮齿条式。气动执行器可以接受连续的气信号,输出直线位移,有的配上摇臂后,可输出角位移。移动速度大,但负载增加时速度会变慢。

阀类型的选择和安装相关的知识

1阀的选择 阀的类型选择应考虑其正确的功能、密封性及抗御可预见的机械和环境影响的能力。 2 闷的安装 阀体不宜依靠管路来支撑。装拆时,宜尽量不扰动管路。阀在安装时宜考虑以下几点: a) 容易靠近、便于装拆、维修和调整; 6) 重力、冲击和振动对阀的影响,尽量减小可能由此引起的偏离; c) 留有足够的空间,以便安放螺栓和(或)使用扳手以及连接电气线路; d) 确保阀不致错误地安装在基座上的措施,例如:安装螺栓的图示、气口标识和其他的标识; e) 流量控制阀宜安装在气缸的气口上或者附近; f) 带有机械操作控制机构(阀的控制器)的阀安装时,其操作装置的部位不能被损坏。 3 集成气路板 当三个或更多的阀紧靠在一起,使用同一进气口时,宜采用集成气路板。 3. 1 表面平面度和表面粗糙度 集成气路板表面的平面度和粗糙度应符合阀供方的推荐值。 3.2 变形 集成气路板在正常的工作压力和工作温度条件下,不应产生引起元件故障的变形。 3.3 安装 集成气路板的安装应牢固、可靠。 3.4 内部通道 内部通道,包括型芯孔和钻削孔,应无有害的杂质,如氧化皮、毛刺、切屑等。这些杂质会使管路限流或被气流冲出引起任何元件,包括密封件和密封装置的故障和(或)损坏。 4 电控阀 4 .1 电气连接 阀与电源的连接应符合相应的标准,例如:GB5 226.1 。对于有危险性的工作场合,应采用适当的防护等级(例如:防爆、防水)。 4.2 接线盒 在阀需要配备接线盒时,接线盒的制作应符合下列要求: a) 按GB4208选定相应的防护等级; b) 为固定的接线端子和端子的连线(包括连线的附加长度)留有足够的空间; c) 为电气罩盖配有防松紧固件,例如在螺栓上加装弹簧垫圈; d) 为电气罩盖加装合适的保险装置,例如金属链; e) 连接的电缆线不应该绷得太紧。 4.3…

Read More

气动执行器与电动执行器之间的区别

从技术性能方面讲,气动执行器的优势主要包括以下4个方面: (1)负载大,可以适应高力矩输出的应用。 (2)动作迅速、反应快。 (3)工作环境适应性好,特别在易燃、易爆、多尘埃、强磁、辐射和振动等恶劣工作环境中,比液压、电子、电气控制更优越。 (4)行程受阻或阀杆被扎住时电机容易受损。 而电动执行器的优势主要包括: (1)结构紧凑,体积小巧。比起气动执行器,电动执行器结构相对简单,一个基本的电子系统包括执行器,三位置DPDT开关、熔断器和一些电线,易于装配。 (2)电动执行器的驱动源很灵活,一般车载电源即可满足需要,而气动执行器需要气源和压缩驱动装置。 (3)电动执行器没有“漏气”的危险,可靠性高,而空气的可压缩性使得气动执行器的稳定性稍差。 (4)不需要对各种气动管线进行安装和维护。 (5)可以无需动力即保持负载,而气动执行器需要持续不断的压力供给。 (6)由于不需要额外的压力装置,电动执行器更加安静。通常,如果气动执行器在大负载的情况下,要加装消音器。 (7)在气动装置中的通常需要把电信号转化为气信号,然后再转化为电信号,传递速度较慢,不宜用于元件级数过多的复杂回路。 (8)电动执行器在控制的精度方面更胜一筹。

气动执行元件在设计中的注意事项

1 气马达和摆动马达 1.1 保护措施 气马达和摆动马达应安装在对可预见损害有防护的地方,或安装适当的防护装置。 应对旋转轴和联轴器采取适当保护,以防止人员遭受危险。 1.2 安装 气马达和摆动马达安装在驱动组件上,应具有足够的刚性,以确保其始终同轴和适应负载转矩。应考虑防止来自末端和侧向的力所造成的意外损害。 1.2.1 侧向负载 气马达 、摆动马达和驱动装置的侧向负载应限制在供方推荐的极限范围之内。 1.2.2 驱动联轴器 驱动联轴器采用的类型,应是经供方同意的,适合安装和符合同轴度公差要求的类型 联轴器的选择和安装应符合气马达或摆动马达的供方规定的安装方式和同轴度公差要求。 1.3 负载和速度 起动和停止的转矩,负载变化的影响,以及动负载的动能,是气马达和摆动马达应用中应当考虑的。 2 气缸 注 :许多气缸是为特定的工业应用类型设计的,其中包括旋转的、回转的、无杆的、绳索的、焊接的、铸铁的、气囊式等等。 2.1 适用性 气缸应按下列特性设计和(或)选择。 2.1.1 抗纵弯性 应注意气缸的行程长度、负载及气缸的安装,以避免气缸的活塞杆在任一位置产生弯曲或纵弯曲 2.1.2 负载和超载 在遇到超载或持续负载的应用场合,应有足够的结构强度和(或)压力支承强度 2.1.3 安装额定值 应按要求的负载选择安装附件。 附件的尺寸、安装和强度的设计应能承受全行程范围内的任何一个限定位置上的最大负载。 注:气缸的额定压力仅能反映缸体的耐压能力,未考虑安装附件的力传递能力供方或制造商宜核算安装附件的额定值。 2.1.4 结构负载 当气缸用作限位装置时,气缸的尺寸及其安装应按机械部件被限制时产生的最大负载来选择,因为这种负载与通常的工作负载相比会超出很多 2.1.5 抗冲击和振动 安装或连接在气缸上的任何元件都应采取防松措施,以防由冲击和振动而引起的松动 2.2 安装和找正 安装时,气缸应找正使负载力作用在其中心轴线上不应使任何侧向或径向负载作用于气缸,除非采取相应的措施补偿这类负载。 非刚性安装的气缸应按照供方提供的技术规范使用。 2.2.1 安装布置 安装面不应造成气缸扭曲,并应留有热膨胀余量。气缸的安装应易于接近,便于维修、调整缓冲装置和气缸的整体更换。 2.2.2 安装紧固件 安装气缸及其附件用的紧固件的设计和安装,应能承受所有可预见的力。宜尽量避免紧固件承受剪切力。脚架式安装的气缸宜具有承受剪切载荷的措施,胜于仅仅依靠紧固件。安装的紧固件应有足够的抗倾覆力矩的能力。 2.2.3…

Read More

蝶阀的结构相关介绍

蝶阀结构简单、体积小、重量轻,只由少数几个零件组成。而且只需旋转90°即可快速启闭,操作简单,同时该阀门具有良好的流体控制特性。蝶阀处于完全开启位置时,蝶板厚度是介质流经阀体时唯一的阻力,因此通过该阀门所产生的压力降很小,故具有较好的流量控制特性。蝶阀有弹密封和金属的密封两种密封型式。弹性密封阀门,密封圈可以镶嵌在阀体上或附在蝶板周边。 如果要求蝶阀作为流量控制使用,主要的是正确选择阀门的尺寸和类型。蝶阀的结构原理尤其适合制作大口径阀门。蝶阀不仅在石油、煤气、化工、水处理等一般工业上得到广泛应用,而且还应用于热电站的冷却水系统。

过滤器按种类区分安装说明

种类有哪些 1.回流过滤器 设在系统的回油管路上,其作用是把系统内产生或侵入的污染物在返回油箱前捕获到。因此它是控制系统污染浓度的最有效最重要的过滤器。虽是低压管路,但根据传动装置的运转状况,也会出现脉动或压力冲击,所以对元件材质、强度要充分考虑。 2.空气过滤器 设在油箱上,具有防止污染物由于油箱的油量变动而随空气混入油箱。因此过滤精度要具有与过滤器同等以上的性能,容量要留有充分余地,以防由于孔阻塞使油箱内压变成负压,引起泵的空穴现象。在周围环境恶劣时尤其要注意。 3.循环过滤器 设在油箱循环的回油路上,系统的容量大,所以在要求要求严格的清洁度时往往被采用,即使系统不在工作,也可以把油箱内污染物捕集到,因此,降低污染浓度的效率最好。另外安装着冷却器,具有可以同时进行冷却、容易维修等优点。但需要用专用泵和电机,造价高。 4.高压管路过滤器(A) 设在泵的出口管道上,有保护污染物不进入系统的作用。因此,可以控制系统的污染物浓度。但是,因为是高压主管路,要受泵的脉动和压力冲击,所以过滤元件的材质,强度要慎重考虑。 5.高压管路过滤器(B) 在系统中,为了保护对污染特别敏感的液压件,才安装此过滤器,也称终端过滤器。因而它往往比其他过滤器的过滤粒度小。因此使用时要选择容量大的。另外对元件的材质,强度也同(A)一样要充分考虑。 6.吸油过滤器 桂隆阀门过滤器设在泵的吸入管路上,滤除油箱内的残留污染物质的通过空气孔进入的污染物,有保护泵的作用。但是为了避免泵产生空穴现象,必须充分注意压力损失,一般使用100—200目的的粗金属网或凹口金属丝材料。因此,它不是控制系统的污染浓度的过滤器 过滤器的安装要点: (1)压力在140kg/cm2以下的一般低压装置中,常见只安装吸入过滤器,但也应安装回流过滤器及空气过滤器 (2)压力在140kg/cm2以上的一般中、高压液装置中,普通用回流过滤器控制污染浓度。但对可靠性有特殊要求时,应并用高压管路过滤器。 (3)电磁比例控制阀或微小流量调整阀等为增加其可靠性,应设终端过滤器。 (4)使用伺服阀时,应努力降低系统的污染浓度,因此,应并用高压及回流过滤器;在大容量时,要设循环过滤器,更应在辅助管路上安装终端过滤器。

排查电磁阀故障的方法

电磁阀是由电磁线圈和磁芯组成,是包含一个或几个孔的阀体。当线圈通电或断电时,磁芯的运转将导致流体通过阀体或被切断,以达到改变流体方向的目的。电磁阀的电磁部件由固定铁芯、动铁芯、线圈等部件组成;阀体部分由滑阀芯、滑阀套、弹簧底座等组成。电磁线圈被直接安装在阀体上,阀体被封闭在密封管中,构成一个简洁、紧凑的组合。我们在生产中常用的电磁阀有二位三通、二位四通、二位五通等。这里先说说二位的含义:对于电磁阀来说就是带电和失电,对于所控制的阀门来说就是开和关。 电磁阀的故障将直接影响到切换阀和调节阀的动作,常见的故障有电磁阀不动作,应从以下几方面排查: 1.电磁阀接线头松动或线头脱落,电磁阀不得电,可紧固线头。 2.电磁阀线圈烧坏,可拆下电磁阀的接线,用万用表测量,如果开路,则电磁阀线圈烧坏。原因有线圈受潮,引起绝缘不好而漏磁,造成线圈内电流过大而烧毁,因此要防止雨水进入电磁阀。此外,弹簧过硬,反作用力过大,线圈匝数太少,吸力不够也可使得线圈烧毁。紧急处理时,可将线圈上的手动按钮由正常工作时的“0”位打到“1”位,使得阀打开。 3.漏气。漏气会造成空气压力不足,使得强制阀的启闭困难,原因是密封垫片损坏或滑阀磨损而造成几个空腔窜气。 在处理切换系统的电磁阀故障时,应选择适当的时机, 等该电磁阀处于失电时进行处理,若在一个切换间隙内处理不完,可将切换系统暂停,从容处理。 4.电磁阀卡住。电磁阀的滑阀套与阀芯的配合间隙很小(小于0.008mm),一般都是单件装配,当有机械杂质带入或润滑油太少时,很容易卡住。处理方法可用钢丝从头部小孔捅入,使其弹回。根本的解决方法是要将电磁阀拆下,取出阀芯及阀芯套,用CCI4清洗,使得阀芯在阀套内动作灵活。拆卸时应注意各部件的装配顺序及外部接线位置,以便重新装配及接线正确,还要检查油雾器喷油孔是否堵塞,润滑油是否足够。

电动执行机构故障分析

电动执行机构电机转动,执行机构输出轴不转动,具体原因可能有: 1.电动执行机构啮合在手动侧,电动执行机构电机转动后,切换装置未能啮合至电机侧,导致电机空转。 2.电动执行机构所带动的蜗轮蜗杆出现磨损打滑,导致电机空转,执行机构输出主轴不转动。 3.电机电源线三相有一相接触不可靠,导致电机时转时不转。 对于电动执行机构电机空转,判断电源无故障后,必须打开电动执行机构一级蜗轮蜗杆箱,检查蜗轮蜗杆磨损情况,如果磨损严重,只能返厂修复,或更换新的电动执行机构;切换装置故障,根据不同电动执行机构切换装置工作原理,一般可以在现场修复。 电动执行机构力矩故障: 1.力矩保护拒动 测量电动执行机构输出力矩,主要有机械式保护开关、电机电流电压功率测量计算转矩、传感器式保护装置之分:机械式力矩保护开关在2000年之前使用较多,属于一种过渡产品,现在一些低端电动执行机构仍然使用,该种力矩保护开关仅能够提供开关量,用于力矩保护,不能提供过程力矩实时数据,测量误差较大;利用电机电流电压及电流电压之间的相角计算转矩,需要软件程序来实现;传感器式力矩保护装置,是将电动执行机构一级蜗杆的轴向形变与压力传感器组合起来,将压力传感器输出的电压经电路板放大,再将该信号输入至控制主板,便可得到电动执行机构实时力矩数值。 力矩保护拒动主要表现在执行机构交流电源跳闸、电动执行机构蜗轮蜗杆严重磨损、门杆弯曲变形、甚至电动执行机构与阀门连接螺丝扭断,应重新设定力矩保护值,并用力矩校验台进行校验。在阀门力矩选择时,既要保证执行机构可靠开关阀门,又要求电动执行机构力矩不能超过阀门门杆所能承受的最大力矩,在参数设置时有一定困难,因为每种阀门门杆所能承受的最大扭矩,往往不容易获得,电动执行机构使用厂家常常根据经验进行力矩参数设置,先设定较小力矩保护值,如果力矩保护动作,再将力矩保护参数设定适当增加,直至阀门在冷态能够正常打开和关闭,热态如果力矩保护动作,继续适当增大力矩保护值,保证阀门在热态能够正常打开和关闭。 2.力矩保护误动 在电动执行机构手动操作较轻的情况下,出现过力矩保护动作,排除力矩保护值设定过小后,对于智能型电动执行机构,观察液晶屏力矩数值提示或指示灯显示过力矩信息,通过向相反的方向转动,则原方向过力矩信号应消失。否则应更换主板或力矩检测装置,逐一排除。 对于机械式力矩检测装置,将电机执行机构向相反的方向转动,检查力矩开关应该断开,否则,应更换力矩保护开关;对于已将力矩保户设定至最大值,仍出现过力矩,则应考虑电动执行机构是否力矩选型过小。 电动执行机构电机过热故障,原因可能有: 1.电动执行机构频繁操作,导致电机真实过热,引发保护动作。 2.热电阻型测温元件断线或接线端子接触不良,误发电机过热信号。 3.电机转子轴承损坏无法转动,由电机堵转引起电机过热。 对于电机轴承损坏,应更换轴承;测温元件损坏时,则应更换电机,因为单独更换测温元件需拆开定子线圈,代价过大,费用足够购买一台新的功率数百瓦电机。 电动执行机构就地、远方均无法操作,原因可能有: 1.电源板故障,电源板向主板提供控制电源,如果电源板故障,有可能导致远方就地均无法操作。 2.主板故障,可能导致控制指令无法执行。 3.电源故障,电动装置检测到电源缺相或无电源,电动执行机构无法操作。 对于此类故障,只能用更换主板、电源板逐一排除,因为使用场所,一般不具备对电路板进行测试的条件。

关于气动执行机构的应用

如果我们的制造商了解为什么使用气动执行机构,以及何时何地使用,那么它就可以提升性能和效率,同时降低总体成本。技术的进步解决了传统空气压缩气体中的难题,帮助人们明白了气动执行如何适应当前的控制架构。 电动机器人和机电执行机构在抓取应用中广泛使用,它们需要复杂灵活的运动控制。如果抓取系统采用电动设计,应用工程师可能就需要假定末端受动器也是电动的。很多应用其实更适合使用气动机械夹具或者真空吸盘。如果不需要高度精确的定位,真空吸盘是抓取不同尺寸、形状和表面处理工件的理想方案。一个例子就是在包装的过程中抓取瓦楞和折叠纸盒材料或者大型物品。真空吸盘也适合抓取娇贵的物品,比如玻璃或者生鲜产品。使用真空吸盘的初始成本很低,仅仅包括吸盘和真空发电机的价格。而气动机械夹具适用于需要高速或者较大抓取力的场合。在一些高强度的应用中,真空发电机的运行成本可能非常高昂,这样整体算下来就不一定合算了。 与电动夹具相比,气动夹具重量更轻,尺寸更小,并具有较低的初始成本。它的缺点是在抓力、速度和定位精确度等方面都有所不足。气动夹具可以根据运行的压力进行调整,它可以采用控制阀或者模拟比例压力阀。如果需要常规和精确的控制,电动夹具就可能是很好的选择。气动夹具的速度可以采用流量控制阀或者调整运行压力进行控制,但是这种方法并不那么精确,如果活塞粘滑不够的话,抓取的速度就不能非常低。 食品和饮料加工机械可能会使用多种类型的执行机构,包括杆式、旋转式和无杆式等多种类型。杆式执行机构是最常见的类型,因为它具有多种功能,同时密封良好,是冲刷环境下的理想解决方案。由于价格低廉,并且食品加工和包装应用并不需要执行机构具备很高的精确性和灵活性,因此气动杆式执行机构在食品饮料行业应用非常广泛。电动执行机构和启动机构不一样,它并不太适用于食品级应用和冲刷环境。气动机构的相关电子元件可以放置在附近的仪表箱当中,并不会受到冲水的影响。然而有时潜在的污染物可能也会被带入到压缩空气系统中。很多阀门制造商现在都生产特殊产品,比如食品级润滑脂,因此在设计过程中要保证与食品接触到的压缩空气都是安全的。这样可以让用户在使用低成本的气动解决方案近距离接触食品和饮料产品的同时,也能够遵守FDA规定和各种规则。 如果一个应用需要具有多个位置的执行元件,有的工程师可能就会考虑电动方案。气动机构可能也可以满足应用的要求,并且相比电动方案一般都会节约更多的成本。气动杆式执行机构最多可以实现五个位置的多气缸(一个执行机构,最多四个活塞杆以及每个活塞的空气连接)。此外,无杆式执行机构的中间停止模块可以使用气动驱动机械标识停止运输。两个杆式机构采用背靠背的方式安装,并且带有外部停止设备,比如液压减震器。 由此可见,气动和电动执行并没有孰优孰之说,选择合适的技术或者技术组合,那在降低成本的同时能够有效地提升绩效。