使用直线导轨的注意事项

使用直线导轨应注意以下事项: 1.保持导轨及其周围环境的清洁即使肉眼看不见的微笑灰尘进入导轨,也会增加导轨的磨损,振动和噪声。 2.导轨在使用安装时要认真仔细,不允许强力冲压,不允许用锤直接敲击导轨,不允许通过滚动体传递压力。 3.导轨使用合适、准确的安装工具尽量使用专用工具,极力避免使用布类和短纤维之类的东西。 4.防止导轨的锈蚀,直接用手拿取上银导轨时,要充分洗去手上的汗液,并涂以优质矿物油后再进行操作,在雨季和夏季尤其要注意防锈。 因而在使用时要求有相当地慎重态度,即变是使用了高性能的上银导轨,如果使用不当,也不能达到预期的性能效果,而且容易使导轨损坏。 不过,在某种特殊的操作条件下,导轨可以获得较长于传统计算的寿命,特别是在轻负荷的情况下。这些特殊的操作条件就是,当滚动面(轨道及滚动件)被一润滑油膜有效地分隔及限制污染物所可能导致的表面破坏。事实上,在理想的条件下,所谓永久导轨寿命是可能的。 润滑保养:脂润滑有预先在密封型导轨中充填润滑脂的密封方式,以及在外壳内部充填适量润滑脂,每隔一段时间进行补充或更换的充填供脂方式。此外,对有多处导轨需要润滑的机械,还采用管道连接至各润滑处的集中供脂方式。脂润滑可做到充填一次润滑脂后长时间不需补充,而且其密封装置的结构也较简单,因此使用广泛。

伺服驱动器的注意事项

伺服驱动器注意事项 1、用户提供电源,DC12-24DC,电流≥100mA,如果电流极性接反,驱动器将不能工作。 2、采用屏蔽电缆时,线径≥0.12mm 2  (AWG24-26),屏蔽层需接地。 3、电缆长度尽可能短,控制CN1电缆不超过3米,反馈信号CN2电缆长度不超过20米。 4、建议采用三相隔离变压器供电,减少电击伤人的可能性;可以考虑增加电源滤波器,提高抗干扰能力。 5、如果负载是继电器等电感性负载,必须在负载两端反并联续流二极管;如果续流二极管反接,可能会损坏驱动。 6、请尽量安装非熔断型断路器使驱动器故障时能及时切断外部电源。 7、采用单端驱动方式,会使频率降低。 交流伺服驱动器作为现代工业自动化与运动控制的支撑性技术之一,由于其高速控制精准、调速范围广、动态特性和效率高,广泛应用于机床、印刷设备、包装设备、纺织设备、橡塑设备、电子半导体、风电/太阳能等新能源以及机器人、自动化生产线等领域。

选择滑台模组需要考虑哪些因素?

滑台模组在自动化领域的发展相当迅速,且各方面的功能都很齐全稳定。 。选择滑台的因数有几种,在选择滑台模组的时候首先要合理的综合考虑多种因素,才能确保以后在使用中正常工作! 1.导向精度以及模组和支承件的热变形等。导向精度是指运动构件沿导轨导面运动时其运动轨迹的准确水平。影响导向精度的主要因素有导轨承导面的几何精度、导轨的结构类型、导轨副的接触精度、外表粗糙度、导轨和支承件的刚度、导轨副的油膜厚度及油膜刚度。直线运动导轨的几何精度一般包括:垂直平面和水平平面内的直线度;两条导轨面间的平行度。导轨几何精度可以用导轨全长上的误差或单位长度上的误差表示。 2.运动平稳性:是指导轨在低速运动或微量移动时不出现爬行现象的性能。平稳性与导轨的结构、导轨副材料的匹配、润滑状况、润滑剂性质及导轨运动之传动系统的刚度等因素有关。 3.抗振性与稳定性:是指在给定的运转条件下不出现自激振动的性能;而抗振性则是指模组副接受受迫振动和冲击的能力。 4.精度坚持性:是指工作过程中保持原有几何精度的能力。精度坚持性主要取决于导轨的耐磨性极其尺寸稳定性。耐磨性与导轨副的资料匹配、受力、加工精度、润滑方式和防护装置的性能的因素有关。导轨及其支承件内的剩余应力也会影响导轨的精度坚持性。 5.刚度对于精密机械与仪器尤为重要。变形包括导轨本体变形导轨副接触变形,导轨抵抗受力变形的能力。变形将影响构件之间的相对位置和导向精度。两者均应考虑 6.运动灵敏度和定位精度直线导轨运动灵敏度是指运动构件能实现的最小行程;定位精度是指运动构件能按要求停止在指定位置的能力。运动灵敏度和定位精度与导轨类型、摩擦特性、运动速度、传动刚度、运动构件质量等因素有关。 滑台模组自动化发展的到来给企业带来了巨大的影响,经济和效益都得到了良好的提升。

机床丝杆分类及其应用

滚动丝杠可分为滚珠丝杠和滚柱丝杠两大类。滚珠丝杠与滚柱丝杠相比而言,摩擦力小,传动效率高,精度也更高。 丝杠是细长柔性轴,它的长度L与直径D的比值较大,一般为20~50,刚性较差。结构形状复杂,有很高的螺纹表面要求,还有阶梯、沟槽等,所以在加工过程中易出现变形。静压丝杠有许多的优点,常被用于精密机床和数控机床的进给机构中。其螺纹牙形与标准梯形螺纹牙形相同。但牙形高于同规格标准螺纹1.5~2倍,目的在于获得良好油封及提高承载能力。 一、丝杠工作条件以及材料 丝杠工作条件以及材料与热处理要求: 1.条件:≥7级精度受力不大轴颈方头等处均不需淬硬如车床走刀丝杠。 要求:45Mn易切削钢和45热轧后σb=600-750N/mm^2除应力HB170-207。 2.条件:≥6级精度要求耐耐磨、尺寸稳定但负荷不大如螺纹磨床、齿轮磨床等高精度传动丝杠。 要求:9Mn2V(直径≤60mm)、CrWMn(直径>60mm)球化退火后球状珠光体5-4级网状碳化物≤3级硬度≤HB227淬火硬度HRC56 0.5。 3.条件:7-8级精度受力较大如各类大型镗床、龙门铣和刨床等的走刀和传动丝杠。 要求:40Cr、42MnVB、(65Mn)调质HB220-250σb≥850N/mm^2;方头、轴颈局部淬硬HRC42。 4.条件:≥6级精度受点负荷的如螺纹或齿轮磨床、各类数控机床的滚珠丝杠。 要求:GCr15(直径≤70mm0)、GCr15SiMn(直径>80mm)球化退火后球状珠光体1.5-4级网状碳化物≤3级HRC60-62。 5.条件:8级精度中等负荷要求耐磨如平面磨床砂轮架升降丝杠与滚动螺线啮合。 要求:40Cr、42MnVB调质HB250中频表淬HRC54。 6.条件:≥6级精度要求抗腐蚀、较高的抗疲惫性和尺寸稳定性.如样板镗床或其他特种机床精密丝杠。 要求:38CrMoAlA调质HB280渗氮HV850调质后基体组织均匀的索氏体渗氮前表面应无脱碳层。 7.条件:≥6级精度要求具有一定耐磨性尺寸稳定性较高强度和较好的切削加工性如丝杠车床齿轮机床、坐标镗床等的丝杠。 要求:T10、T10A、T12、T12A球化退火HB163-193球化等级3-5级网状碳化物≤3级调质HB201-229。 二、丝杠的组成和应用特点 丝杠由螺杆、螺母和滚珠三部分组成,在使用中发挥重要的作用和价值。丝杠具有良好的工作原理和功能,它的功能是将旋转运动转化成直线运动,这是滚珠螺丝的进一步延伸和发展,这项发展的重要意义就是将轴承从滚动动作变成滑动动作。丝杠的发展是滚珠螺丝的发展壮大和进步,促进中国技术的提高和进步,保证中国在设备和技术行业的进步、发展技术。由于具有很小的摩擦阻力,丝杠被广泛应用于各种工业设备和精密仪器,在行业中发挥重要的作用和价值。丝杠是工具机和精密机械上最常使用的传动元件,其主要功能是将扭矩转换成轴向反覆作用力,同时兼具高精度、可逆性和高效率的特点。丝杠良好的产品特点和性能促使其在不断的使用和发展,在不同的行业中发挥重要的作用和价值,不断的在同行业中发挥作用。 丝杠具有良好的产品特点,具体表现在以下方面: 1.与滑动丝杠相比,丝杠的驱动力矩为1/3.由于丝杠的丝杠轴与丝母之间有很多滚珠在做滚动运动,所以能得到较高的运动效率。与过去的滑动丝杠副相比驱动力矩达到1/3以下,即达到同样运动结果所需的动力为使用滚动丝杠副的1/3.在省电方面很有帮助。 2.无侧隙、刚性高的丝杠可以加予压,由于予压力可使轴向间隙达到负值,进而得到较高的刚性(丝杠内通过给滚珠加予压力,在实际用于机械装置等时,由于滚珠的斥力可使丝母部的刚性增强)。 3.微进给可能,丝杠由于是利用滚珠运动,所以启动力矩极小,不会出现滑动运动那样的爬行现象,能保证实现精确的微进给。 4.高精度的保证,丝杠是用日本制造的世界最高水平的机械设备连贯生产出来的,特别是在研削、组装、检查各工序的工厂环境方面。对温度·湿度进行了严格的控制,由于完善的品质管理体制使精度得到充分保证。 5、高速进给可能,丝杠由于运动效率高、发热小、所以可实现高速运动,展现高速的运动功能。 四、丝杠的工艺精度和硬度测试 在非标设备和夹具中,长丝杠被广泛应用,为了提高丝杠的使用寿命,广泛采用淬硬丝杠,这种丝杠以磨为主,精度靠螺纹磨床磨削来保证。65Mn材料的丝杠采用的热处理工艺为淬火、回火、冰冷处理、回火。丝杠在粗磨(粗车)后须进行高温时效,半精磨(精车)后应采取低温时效,以消除机加工过程中产生的应力,提高丝杠的稳定性。在螺纹磨床上加工螺纹,是目前螺纹加工中获取高精度、低表面粗糙度最常用的切削方法,随着高精度淬硬螺纹零件的广泛应用,磨削加工螺纹的优越性得到充分体现。在现实生产中,为了获得较高精度和表面质量的丝杠,有必要对其磨削工艺进行深入探讨。 丝杠的工艺基准是两端的中心孔,中心孔一般应采用B型中心孔,它可以防止端面碰伤而影响中心孔的精度,同时中心孔的硬度应达到6O~65HRC,中心孔的精度是保证丝杠精度的关键,在粗磨、精磨工序前即淬火、时效后必须安排中心孔修研工序。中心孔与顶尖的接触面积在粗磨时要求为75%,精磨时要求达到80%以上。研磨时对丝杠的轴向压力不可过大,以免丝杠变形。这里选用的修研方法是在机床上用六棱硬质合金顶尖刮研,它的刃带有微量切削作用和挤光作用,能修正中心孔的几何形状误差,且效率高,工具寿命长,粗糙度可达Ra0.8μm。 丝杠材料直接影响加工工艺及热处理后工件的机械性能。因此高精度长丝杠的制造中一个很重要的问题就是合理选择材料,通常可从合金工具钢、合金结构钢、碳素工具钢中选择。丝杠在热处理过程中应注意避免产生弯曲变形,尽量不采用校直工序,必要时也只能采用热校直。因为在常温下校直的丝杠,虽然短时间内看起来已校直,但第2天或者经过磨削加工又会产生弯曲变形。 五、精密丝杠使用不容忽视问题 精密丝杠是精密机床、数控机床及其它精密机械与仪器的重要传动装置。为减小残余应力的影响,丝杠毛坯须经球化退火处理,以获得稳定的球状珠光体组织;丝杠热变形的计算通常需要根据实际加工情况建立温度分布数学模型,但实际加工情况的复杂性增加了数学建模难度。而基于能量守恒定律,采用平均线膨胀系数进行计算,则只需考虑热量含量相同的任一温度分布状况的热变形计算,可在保持原有精度的前提下大大简化数学模型,使丝杠热变形的计算变得简洁、方便。 磨削加工丝杠时所产生的磨削热约有60%~95%被传入被磨丝杠中。由于磨削速度极高,热量瞬间聚集在丝杠表面形成局部高温,随着砂轮沿丝杠轴向进给,热量向丝杠两端及内部传导,同时与丝杠表面的冷却介质发生对流换热。因此,丝杠磨削加工时的热量传播方式主要包括磨削表面所需表面能、残留于表面和磨屑中的应变能、砂轮的温升、丝杠内部的热传导、丝杠与冷却介质的对流换热等。 在精密丝杠使用一段时间后,因残余应力释放引起的丝杠变形误差也不容忽视,为此必须对磨削加工引起的残余应力分布状况进行精确计算,并据此进行误差补偿。目前对磨削残余应力的研究多集中于对实验数据的分析,而从理论上确定磨削加工残余应力分布状况则是今后需要深入研究且具有应用价值的工作。为提高丝杠加工系统刚度,需采用高同轴度的跟刀架或导套等辅助支承。精密丝杠的热变形主要源于砂轮磨削加工产生的环状移动热源在丝杠上产生温度分布引起的热膨胀,因此在热变形数学建模中需考虑的因素有:磨削热形成的热源特征、热源的移动性、热量沿杆件的传导特征、热量的散热特征等。此外,加工后的残余应力对丝杠尺寸的影响也不容忽视。 六、旋转伺服电机+滚珠丝杠的驱动方式 随着直接驱动技术的发展,直线电机与传统的”旋转伺服电机+滚珠丝杠”的驱动方式的对比引起业界的关注。滚珠丝杠在使用方式中可能存在椅子质量性能方面的问题,需要根据市场情况和标准使用,得到良好的使用趋势。 1845年英国人就已经发明了直线电动机,但当时的直线电动机气隙过大导致效率很低,无法应用。19世纪70年代科尔摩根也推出过,但因成本高效率低限制了它的发展。直到20世纪70年代以后,直线电机才逐步发展并应用于一些特殊领域,20世纪90年代直线电机开始应用于机械制造业,现在世界一些技术先进的加工中心厂家开始在其高速机床上应用。 速度比较: 速度方面直线电机具有相当大的优势,直线电机速度达到300m/min,加速度达到10g;滚珠丝杠速度为120m/min,加速度为1.5g。从速度上和加速度的对比上,直线电机具有相当大的优势,而且直线电机在成功解决发热问题后速度还会进一步提高,而”旋转伺服电机+滚珠丝杠”在速度上却受到限制很难再提高较多。

如何选择直线模组滑台?

当前的各行各业,涉及到自动运行的场合中,业界普遍观察到,使用直线滑台模组的数量和品种快速增加。与以前老式的机械手相对比,堪称超值的直线滑台模组体在实际使用上,不但性能好,而且维护的便利性也相当令人满意,具备明显的优势。其使用已经超越了工业制造设备外,甚至在医疗器械甚至模拟飞行器手臂等方面,也日渐普及。 目前国内专业的直线滑台模组产品,都具备了以下的优势: 1、直线滑台模组具有便于维护、工作稳定性高、重量轻的优点。 2、因为设备运行精度高,不需要使用气缸组件,其使用过程中的噪音和震动的控制,都达到了很高的水平。 3、针对使用环境中产生腐蚀的因素,也都做了专门处理。 用户在选择合适的产品时,要考虑直线滑台模组怎样才能最大限度满足本企业的运行要求。 第一,对工作环境中,直线滑台模组需要承担的负荷是重点考虑的内容。例如,若预计到工作中的负载较大的情况下,就应该考虑使用滚珠丝杆的传动方式。滚珠丝杆传动可实现更高的负荷,并且运行中的噪音、震动更低。 第二,应对设备往复运动的精度要求,做到心中有数。多次往复运行后,设备复位后与原点的距离,这个参数反应了设备的精度。精度参数直接影响生产运行的结果,因此在选择直线滑台模组时这是必须重点考虑的。为了增加精度,还可以选择加载光栅尺磁栅尺等定位装置。如果是需要考虑热膨胀系数因素的场合,磁栅尺更适合,而且更加对粉尘、油污场合耐受性更强。 第三,对设备运行的行程要充分考虑,一般来说,国内专业的直线滑台模组都会比实际行程需求预留多一定的余量。这是为工作环境的变化留出空间,因为使用场合的需求和环境将来有可能出现不同,选择直线滑台模组设备时,要为此做出准备。 社会各方面有自动化运行要求的场合,都在关注线性滑台模组的应用。掌握专业知识,并且根据自身使用的具体要求,对使用场合中的精度、速度、行程空间等各方面做出详细规划。并据此去选择厂家信誉好的直线滑台模组,就能为使用单位实现高速度、高精度的生产运行。尤其是在对安全可靠方面要求高的场合,更能实现高效益。

购买模组滑台有哪些注意事项?

在工业自动化进程中,专业的模组滑台独具特色的生产方式、生产潜力得到了使用者一致认可,市场上对其需求量也在加大,但是,目前市场上模组滑台产品种类众多,品质不一,消费者面临一定的选择困扰,因此小编就给大家介绍一下在购买模组滑台的注意事项。 1、注意模组滑台的精度坚持性 这里的精度坚持性是在具体的执行过程中,模组滑台保留原来的几何精度的最基本的能力,这种能力和尺寸的稳定性、导轨的耐磨性有巨大的关系。因此,在购买模组滑台产品时,一定要注意其精度的坚持性,否则在实际的操作过程中,很容易造成产品精度不准确。 2、注意模组滑台的导向精度 这里的导向精度指的是在导面运动的过程中,模组滑台的运动轨迹的精准水平,综合各方面来说,影响最大的因素是油膜所持有的刚度,另外,外表毛糙的程度、几何精度性也会有一定的影响。因此,在购买模组滑台的时候一定要对它的导向精度有准确的了解,同时,也要考虑到导轨表面的几何精度性。 3、注意模组滑台的抗震性 这里所说的抗振性指的是模组滑台承受冲击能力、震动能力。模组滑台一定要具有很好的抗振性,因为如果模组滑台没有很好的抗振性,很容易把产品的基本性能破坏掉,生产出来的产品质量将会大打折扣。 大家只要注意这三点事项基本上就可以购买到一款性价比高的模组滑台。当然,在实际的购买过程中,还需要结合自己的实际需要,及产品的规格、类型、结构特点等等,只有结合各方面的因素,大家才能购买到最适合自己的模组滑台。

滚珠丝杆的安装步骤有哪些?

滚珠丝杠由螺杆、螺母、钢球、预压片、反向器、防尘器组成。它的功能是将旋转运动转化成直线运动,这是艾克姆螺杆的进一步延伸和发展,这项发展的重要意义就是将轴承从滑动动作变成滚动动作。由于具有很小的摩擦阻力,滚珠丝杠被广泛应用于各种工业设备和精密仪器。滚珠丝杠是工具机和精密机械上最常使用的传动元件,其主要功能是将旋转运动转换成线性运动,或将扭矩转换成轴向反复作用力,同时兼具高精度、可逆性和高效率的特点。 1.支撑座侧支撑单元的安装: >01丝杆轴插入单列轴承后,用止推环固定。 >02用止推环固定后,将轴承插入支撑座内。 >03安装精度参考值: 偏心         倾斜     有间隙时:   20-30μm     1/2000max     预压式螺母: 15-25μm    1/3000max     有高精度要求: 10μm以下 1/5000max   2.滚珠丝杠往工作台和底座上安装: >01 先调整到安装精度参考值以内。 >02以固定侧支撑单元为基准时,请将螺母外径与工作台螺母支座内径调整至保持一定的间隙状态。 >03以工作台为基准时,对于方形支撑单元使用薄垫片调整中心高度,对于法兰型支撑单元要将螺母外径与工作台螺母制作内径调整至保持一定间隙的状态。 图3.往工作台及底座上安装: >01将滚珠丝杆螺母插入螺母支座后临时紧锁。(将螺母放置在滚珠丝杆轴的中间位置) >02将固定侧和支撑侧的支撑单元临时固定到基座上。 >03移动工作台与固定侧支撑单元后,将支撑单元拧紧固定到基座上。 >04固定好后,将工作台移动至靠近固定侧的行程尽头附近,并将工作台和螺母支座相互固定。 >05固定好螺母和螺母支座。 >06将第4步中固定的螺栓松开,再次将工作台和螺母支座相互固定。推动工作台至固定支撑单元处调整其中心位置,使工作台能顺畅移动,对于精密工作台还需要将丝杆轴调整到与LM导轨平行的位置。 >07固定好后,确认工作台的运行状态,将工作台移动至支撑座。 >08移动工作台至支撑侧支撑单元后,将拧紧支撑单元的固定螺栓。 >09固定好后,将工作台移动至靠近支撑侧的行程尽头附近,并再次将工作台和螺母支座松开后相互固定。 >10将工作台移动到固定侧,左右移动,确认运行状态。往返移动多次将工作台调整到再全行程内都能顺畅运行的状态。 >11如果与运行中发生异响,阻塞的现象,请重复3-10的工序。 4.确认精度和完全拧紧螺栓: >01使用千分表确认丝杆轴端外径部分的跳动、轴方向的间隙。 >02依次完全拧紧螺母、螺母支座、固定侧支撑单元、支撑座固定单元各处的螺栓。 5.连接电机: >01将电机支座安装在基座上。 >02用轴器连接电机和滚珠丝杆。 >03充分的试运行。

工业机器人的技术参数有哪些?

机器人已经成为了我们生活的一部分,但是除了经常能看到机器人的外表以外,我们很少会接触到机器人的“内在”,如果你是一个标准的机器人爱好者,你还应该知道这个——机器人的技术参数。 了解工业机器人的阶段,需要了解其工业机器人的几个因素。尺寸,有效负载能力,重复性,覆盖范围和其他机器人规格在为工业应用选择合适的机器人手臂方面发挥主要作用。 工业机器人技术参数——概念 机器人技术参数是机器人制造商在产品供货时所提供的技术数据。所以不同的机器人,它的技术参数不一样。 工业机器人的主要技术参数一般都有:自由度,定位精度和重复定位精度、工作范围、最大工作速度和承载能力等。 1、“自由度”: 自由度是指机器人所具有的独立坐标轴运动的数目。机器人的自由度是根据它的用途来设计的,在三维空间中描述一个物体的姿态需要六个自由度,机器人的自由度,可以少于六个,也可以多于六个。 2、定位精度和重复定位精度: 我们经常说到的机器人的精度是指机器人的定位精度和重复定位精度。 定位精度:机器人手部实际到达位置和目标位置之间的差异。 重复定位精度:机器人重新定位其手部于同一目标位置的能力,可以用标准偏差这个统计量来表示。 3、“工作范围”: 也就是机器人的工作区域,机器人手臂末端或手腕中心所能到达的所有点的集合。工作范围的形状好和大小是十分重要的,机器人在进行某一个作业的时候,可能会因为存在手部不能到达的作业死区而不能完成任务。 4、最大工作速度: 通常指机器人手臂末端的最大速度,工作速度直接影响到工作效率,提高工作速度可以提高工作效率,所以机器人的加速减速能力显得尤为重要,需要保证机器人加速减速的平稳性。 5、承载能力: 机器人在工作范围内,任何位姿上所能承受的最大质量。机器人载荷不仅取决于负载的质量,而且还和机器人的运行运行速度和加速度的大小和方向有关。 承载能力是指高速运行时的承载能力,承载能力不仅要考虑负载,还要考虑机器人末端操作器的质量。 常用机器人规格 机器人尺寸(kg):需要考虑工业机器人手臂的物理尺寸和重量,以确保机器人手臂适合车间已有的现有系统和设备。 最大有效载荷能力(kg):机器人和规格的工业应用通常是相辅相成的。不仅需要考虑零件的尺寸和重量,而且还应该将臂端装置的重量加在方程式中。 重复性(mm):重复性是指机器人手臂返回到前一点的能力。许多当前的工业机器人手臂具有+/- 0.5毫米至+/- 0.02毫米的可重复性。诸如轴数,尺寸和范围等因素会影响重复性。 垂直和水平距离(mm):工业机器人手臂的伸展能力通常在决定手臂是否适合应用时发挥重要作用。机器人手臂需要能够到达正在工作的部件或其正在工作的系统的所有必要区域。 工业机器人规格在选择工业机器人手臂时非常重要。

单轴机械手应该如何选型?

单轴机械手主要内部结构为滚珠丝杆、直线导轨、铝合金型材、滚珠丝杆支撑座、联轴器、马达、光电开关等。可以通过各个单元的组合实现负载的直线、曲线运动,是轻负载的自动化更加灵活、定位更加精准。 型材:铝合金型材 内部结构:滚珠丝杠、直线导轨、滚珠丝杆支撑座、联轴器、马达、光电开关 单轴机械手的选型: 1.机械手仕样: 机械手分为滚珠丝杠型:精度高 皮带型:负载重 2.行程:滚珠丝杠型:1-1500mm 皮带型:1-3000mm 3.速度:滚珠丝杠型:1-1000mm 皮带:1-1800mm 4.载荷:滚珠丝杠型:1-50kg 皮带型:1-30kg 5.安装方式:水平安装,墙面安装,垂直安装 6.使用环境:一般环境/无尘环境

直线模组详解及典型应用技术

直线模组详解 直线模组是一个统称,根据习好叫法有多种,如线性模组、直角坐标机器人、直线滑台等,是继直线导轨、直线运动模组、滚珠丝杆直线传动机构的自动化升级单元。可以通过各个单元的组合实现负载的直线、曲线运动,是轻负载的自动化更加灵活、定位更加精准。 直线模组较早是在德国开发使用的,市场定位在光伏设备,上下料机械手、裁移设备、涂胶设备、贴片设备等,这种机械手能给这个行业的设备带来便利的点有:单体运动速度快、重复定位精度高、本体质量轻、占设备空间小、寿命长。直线模组运用的范围一直在扩大,跑向全世界。在我们国家跑的速度更快,近几年,直线模组的开发更是快,尤其在深圳,做的很多,而且质量也不错,深受设备制造商的青睐。 直线模组发展至今,已经被广泛应用到各种各样的设备当中。为我国的设备制造发展贡献了不可缺少的功劳,减少对外成套设备进口的依赖,为热衷于设备研发和制造的工程师带来了更多的机会。直线模组当前已普遍运用于测量、激光焊接、激光切割、涂胶机、喷涂机、打孔机、点胶机、小型数控机床、雕铣机、样本绘图机、裁床、移载机、分类机、试验机及适用教育等场所。 就当前广泛使用的直线模组可分为2类型:同步带型和滚珠丝杆型。 同步带型直线模组主要组成由: 皮带、直线导轨、铝合金型材、联轴器、马达、光电开关等。 滚珠丝杆型直线模组主要组成由: 滚珠丝杆、直线导轨、铝合金型材、滚珠丝杆支撑座、联轴器、马达、光电开关等。 行业应用领域 直线模组广泛应用于点胶;半导体液晶设备精密定位、检测;医药精密分析仪平台;机床行业(激光、 EMD电火花加工);晶圆检测、三坐标检测机;大型印刷、扫描、3D打印;制造、加工、实验装置;半导体生产制造设备;平板显示器(FPD)精密测试设备;激光设备、机器视觉检测设备;电子元件、PCB检测设备;物流设备装置等多种行业。 典型应用案例技术 1、异形插件 X轴Y轴 Z轴直线模组 X轴:                              1、有效行程:500mm                      2、重复定位精度:±0.003mm 3、速度: 1.2-1.5m/s 4、加速度:2G                          5、光栅尺分辨率:0.001mm 6、X轴负载50KG Y轴: 1、有效行程:500mm 2、重复定位精度:±0.003mm 3、速度: 1.2-1.5m/s 4、加速度:2G 5、光栅尺分辨率:0.001mm 6、Y轴负载:25KG Z轴: 1、有效行程:200mm                      5、重复定位精度:±0.003mm                    6、速度: 0.7m/s                         7、加速度:2G                          5、光栅尺分辨率:0.001mm                    6、Z轴负载10KG 2、微纳机 X Y轴直线模组 X轴:                              1、有效行程:120mm                      2、重复定位精度:±0.002mm 3、速度: 500mm/s                       4、加速度:2G                          5、光栅尺分辨率:0. 1u 6、X轴负载30KG Y轴: 1、有效行程:120mm 2、重复定位精度:±0.002mm 3、速度: 500m/s 4、加速度:2G 5、光栅尺分辨率:0….

Read More

六轴工业机器人控制方式和特点

工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。 6轴工业机器人的全部控制由一台微型计算机完成。另一种是分散式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。根据作业任务要求的不同,机器人的控制方式又可分为点位控制、连续轨迹控制和力控制。 6轴工业机器人的特点主要有以下几方面: 1)可编程:6轴工业机器人最大特点是柔性启动化,柔性制造系统中的一个重要组成部分。工业机器人可随其工作环境变化以及加工件的变化进行再编程,适合于小批量多品种具有均衡高效率的柔性制造生产线的应用。 2)拟人化:6轴工业机器人结合机器人与人的特点。在6轴工业机器人的结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。其传感器提高了工业机器人对周围环境的自适应能力。 3)通用性:一般6轴工业机器人在执行不同的作业任务时具有较好的通用性。当然也有专用的工业机器人。 4)机电一体化:6轴工业机器人是机械学和微电子学的结合-机电一体化技术。工业机器人具有各种传感器可以获取外部环境信息,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都是微电子技术的应用,特别是计算机技术的应用密切相关。 六轴关节工业机器人的研发设计及制造已经有好几十年的历史了,整个工业机器人的研发制造体系较为完善,各研发厂家在相互竞争中可以相互模仿、改善、不断推陈出新。博立斯多年来坚持投入研发、生产各类自动化设备,其中包括:数控车床机械手、上下料机械手、机床机械手、冲压机械手、6轴工业机器人、4轴工业机械手、多轴工业机器人等。多年来不断推陈出新,研发生产的自动化设备帮助许多企业解决了生产难题,备受企业的喜爱。

滚珠丝杠与齿条传动区别

1.齿条传动:也分直齿齿条和斜齿齿条,分别与直齿圆柱齿轮和斜齿圆柱齿轮配对使用,齿条的齿廓为直线而非渐开线(对齿面而言则为平面),相当于分度圆半径为无限大圆柱齿轮。 2.滚珠丝杠:一般是用世界最高水平的机械设备连贯生产出来的,特别是在研削、组装、检查各工序的工厂环境方面,对温度、湿度进行了严格的控制,由于完善的品质管理体制使精度得以充分保证。滚珠丝杠是将回转运动转化为直线运动,或将直线运动转化为回转运动的理想的产品。滚珠丝杆的技术的发展,使轴承的滚动动作变成滑动动作。由于具有很小的摩擦阻力,滚珠丝杆被广泛应用于各种工业设备和精密仪器。 区别

如何找到合适的直线导轨?

循环滚珠导轨无疑是最常用的直线导轨类型,用于广泛应用。它们采用的技术提供负载能力、精度和力矩控制方面的重要优点。但是,在一些条件和应用中,它们的优点可能变为限制。在此类情况下,建议选择不同解决方案,这些轨道快速安静,能够处理平行度和平坦度方面的较大偏差,提供不同型材和不同防腐蚀处理。 1.应对偏差 循环滚珠导轨是高精度产品,具有很高的应对所有方面沉重负载的能力。但是,要实现这些结果,这些导轨安装的平行度和平坦度精度必须达到十分之一毫米。 因此,用于不是特别精确和/或坚硬的结构时,需要采取一些增加额外成本和时间的措施,例如精磨基础表面,长而复杂的安装操作。 2.在恶劣环境下工作 在循环滚珠导轨中使用极小直径的多个球体,可以在滑块和导轨之间产生大量接触点。这意味着这些导轨可以非常简单地应对极重负载,是适合多种应用的最佳选择。 但是,在导轨所在位置不是完全干净的环境中,存在的碎屑和杂质可能成为此类导轨无法克服的障碍:小球体紧密契合,无法轻松滑动,滑块上的保护屏蔽不能提供足够防护,滑块停止正常工作并锁死。 杂质不是直线运动解决方案的唯一问题来源。腐蚀是许多应用面临的另一个重大威胁。考虑工业机械领域,许多应用安装在潮湿环境中或接触制冷剂。所有室外应用,从特殊车辆的门和平台,到火车地板下方,以及任何其他用于室外的设备类型。此外,腐蚀还威胁与强酸或强碱、腐蚀性制剂接触或者甚至经常清洗的应用组件,如食品、制药或医疗行业的机器和自动化系统。 3.安静工作 生产和工业环境最早要求安静搬运系统。这是符合噪音控制法规并确保健康有效工作场所的基本要求。还有一些领域,例如医疗和医院应用,最重要的要求(排在质量滑动容量后)是避免对用户或患者造成任何形式的干扰。 4.定制化 通常与配置直线导轨或专用表面处理有关的具体需求会导致长时间等待和高成本。

直线滑台模组的选型安装事项详解

三轴平台设计原理和特性 X、Y、Z三轴都采用线性模组,秉承了线性模组的所有特性。导轨主要部分采用特制的高强度、高直线度铝型材,型材内部配有特殊的圆钢轴保证机械强度并长期保持平行度,滑块是偏心螺母设计和防松移设计,可自己调节滑块松紧。采用线性模组特别定做的步进马达作为X、Y、Z三轴的运动驱动(使用直线电机驱动滑块运行,使其在停电的情况下滑块保持原状,不会因为负载而掉下来,免去突发停电运行不当的担忧)。三轴都原配好了限位感应器,减去了客户另配感应器的麻烦;可根据客户要求在出厂前打好孔。 应用广泛。 不仅广泛用于测试、点胶机、自动化生产设备等行业,还可根据客户需求,改装成简易机器人,设计、安装及维护都很简单方便。可根据客户工艺需要,设计最适用的机型。 技术参数: 工作范围X/Y/Z 300×300×100mm(可根据客户要求定做) 最大速度 500mm/sec 机械精度 ±0.02mm 重复精度 ±0.1mm 传动系统 步进马达伺服电机/皮带 线性模组也叫电动模组、单轴机械手、数控滑台。是实现自动化的重要产品。 不同运用场合与运用要求,确定线性模组参数的选型不同。我们建议:合适的就是最好的。 在我们确定要选购线性模组是,我们需要确定: 1)有效行程需要多少?即线性模组参数从一端运动到另一端的距离需要多少? 2)运动精度要求多少?运动精度指重复运动精度,即线性模组参数往返30次后回到终点时与原点的距离。 3)负荷是多少?即线性模组参数需要负荷多少重量的物体? 4)运行速度要求多少? 相对应的,我们在选型时,主要参照上述需要来确定线性模组的具体要求: 1)实际选用的,有效行程需要比实际的多50mm左右,以预留扩展的空间。 2)不同用途的机械手对运动精度要求不同,一般步进电机驱动同步带的线性模组,运动精度可以达到0.1mm,伺服电机驱动滚珠丝杆时,运动精度可以达到0.01mm。不过有效行程大于400mm时,运动精度会下降。

各种螺纹的计算公式和钢材重量计算公式收集!

各种螺纹计算公式 一、 60°牙型的外螺纹中径计算及公差(国标GB 197/196) a. 中径基本尺寸计算: 螺纹中径的基本尺寸=螺纹大径-螺距×系数值。 公式表示:d/D-P×0.6495 例:外螺纹M8螺纹中径的计算 8-1.25×0.6495=8-0.8119≈7.188 b. 常用的6h外螺纹中径公差(以螺距为基准)。 上限值为“0”,下限值为P0.8-0.095、P1.00-0.112、P1.25-0.118、P1.5-0.132、P1.75-0.150、P2.0-0.16、P2.5-0.17 上限计算公式即基本尺寸,下限值计算公式d2-hes-Td2即中径基本尺寸-偏差-公差。 M8的6h级中径公差值:上限值7.188;下限值:7.188-0.118=7.07。 C. 常用的6g级外螺纹中径基本偏差: (以螺距为基准)。 P0.80-0.024、P 1.00-0.026、P1.25-0.028、P1.5-0.032、P1.75-0.034、P2-0.038、P2.5-0.042 上限值计算公式d2-ges即基本尺寸-偏差 下限值计算公式d2-ges-Td2即基本尺寸-偏差-公差 例M8的6g级中径公差值:上限值:7.188-0.028=7.16 下限值:7.188-0.028-0.118=7.042。 注:①以上的螺纹公差是以粗牙为准,对细牙的螺纹公差相应有些变化,但均只是公差变大,所以按此控制不会越出规范界限,故在上述中未一一标出。 ②螺纹的光杆坯径尺寸在生产实际中根据设计要求的精度和螺纹加工设备的挤压力的不同而相应比设计螺纹中径尺寸加大0.04—0.08之间,为螺纹光杆坯径值,比如公司的M8外螺纹6g级的螺纹光杆坯径实在7.08—7.13即在此范围。 ③考虑到生产过程的需要外螺纹在实际生产的未进行热处理和表面处理的中径控制下限应尽量保持在6h级为准。 二、 60°内螺纹中径计算及公差(GB 197 /196) a. 6H级螺纹中径公差(以螺距为基准)。 上限值:P0.8+0.125 P1.00+0.150 P1.25+0.16 P1.5+0.180 P1.25+0.00 P2.0+0.212 P2.5+0.224 下限值为”0”, 上限值计算公式2+TD2即基本尺寸+公差。 例M8-6H内螺纹中径为:7.188+0.160=7.348 上限值:7.188为下限值。 b. 内螺纹的中径基本尺寸计算公式与外螺纹相同。 即D2=D-P×0.6495即内螺纹中径螺纹大径-螺距×系数值。 c. 6G级螺纹中径基本偏差E1(以螺距为基准)。 P0.8+0.024 P1.00+0.026 P1.25+0.028 P1.5+0.032 P1.75+0.034 P1.00+0.026…

Read More

直线电机模组需要注意哪些?

随着工业自动化的改革升级,越来越多的企业开始投入到智能化生产工艺上面。据了解美国apple苹果手机最新款iPhoneX上市了,热度非常高,我们都知道它的工艺要求非常高,质量把控十分严格。那么是如何实现,应用什么新机器制作的呢? 带着这些疑问,我们一起来到富士康集团一探究竟。从它的生产车间看到,大部分都是机器自动化操作,以往人工已经寥寥无几,是什么设备这么厉害呢?答案就是“直线电机模组”,如此庞大的设备运行,是如何保障品质?保障交期的呢?我们咨询了技术工程师:“在机械智能化的运转中,对于日常的维护是非常重要的。我们在订购、运行、维护都进行了一体化分析把控,从而保证了后期的正常稳定工作”。 面对如此庞大的机械设备,我们该如何维护呢?下面来听听:在使用直线电机模组时需要注意哪些事项?哪些细节呢?让我们带着疑问一同来解答吧。 第一、购买前注意事项 1、购买时,请与我方销售人员核对使用环境范围,请勿在硫磺及生产硫化物气体等腐蚀性的环境中使用,此环境中会导致线路断裂或接触不良等情况发生。 2、选型时,请与我方销售人员核对使用要求及电机参数,确保使用的科学性。 第二、操作使用注意事项 1、本产品作为精密机械零件制造并普遍应用于机械行业,请具有专业知识与经验的技术人员进行操作。 2、操作时,请务必按照产品的操作规范使用。 3、应用中,如电缆、电机安装方式等使用环境有特殊要求时,请务必于我方销售人员联系确认,防止事故的发生以及避免造成不必要的损失。 4、本设备所有端子都不允许带电拔插,防止损坏电机及驱动器。 5、电机地线务必进行接地处理。 6、请勿将设备的控制信号线与动力线(主电源线,电机动力线等)防止在同一线管中或绕成一束。 7、电机运转中,请勿触摸电机的运动部件。 第三、后续维护注意事项 1、保管设备时请注意:温度控制在-20℃至+60℃内;湿度:85%以内,放置在无尘、洁净、无腐蚀性气体、无研磨液、无金属粉末、无油的环境中。 2、移动、布线、维护、检查等情况时,请在切断电源3分钟以上再进行操作。切断电源2-3分钟左右,动力线仍有电压残留,请勿草率接触设备。 3、频繁断开/开启电源会导致主电路元器件的劣化,切断电源后请在一分钟以上再次通电,开关电源的频率限制在“2次/3分钟”以内。 4、使用时,请定期对直线导轨进行润滑保养。

机器人的动作精度该从哪些方面提高

2016年是机器人行业飞速发展的一年,从猴年央视春节晚会上的机器人舞蹈到现在遍地开花的各大机器人操作系统、控制系统企业,从全国各地的机器人大会、机器人论坛到机器人与互联网运营、大数据等新兴技术的结合,机器人早已经不是我们传统意义上重复性重体力劳动的人工替代品,而是越发智能与常见。越来越多的机器人进入寻常企业,而对于这些企业来讲,机器人控制系统的性能如何,是他们关注的重点。 就目前来讲,业界尚没有专门针对工业机器人控制系统的性能测试标准,在机器人行业,提到性能规范,一般是针对整机而言。评价工业机器人整机性能的指标有很多,基于不同的的设计目的以及用途,其整机配件搭配、结构设计以及参数调整也有所差异,控制系统只是其中的一个环节,发动机(伺服电机)、变速箱(减速器)、底盘/悬挂(结构件)等对机器人整体的性能都有很大的影响。 国标《GB/T 12642 – 2001 工业机器人性能规范及其试验方法 》中针对十几种机器人的性能指标进行界定,其中经常提到的有三种:重复定位精度、位姿精度、轨迹精度。 一般来说,工业机器人控制系统的性能可以由机器人的位姿精度和轨迹精度来间接表示。 1、位姿精度(Pose Accuracy): 机器人的位姿精度一般指位姿重复度。 机器人的位姿是指机器人相对于某一参考坐标系的位姿,其重复位姿精度是机器人的一项最重要的技术指标,该指标集中反映机器人的机电性能和使用效果,即机器人对同一指令位姿从同一方向重复响应n次后实到位姿的一致程度。一般采用激光跟踪仪进行位姿精度的测量,如下图所示: 上传图1 想要达到较高的位姿精度,需要控制系统提供以下功能: 补偿机械连杆的运动学参数误差,如连杆加工误差、装配误差、机械公差等; 补偿关节柔性及连杆柔性; 提供高精度的机械零点标定功能。 2、轨迹精度(Path Accuracy): 机器人的轨迹精度,一般是指轨迹重复精度,表示机器人对同一轨迹指令重复n次时实到轨迹的一致程度。一般采用激光跟踪仪进行测试,让机器人重复走某一条轨迹n次,然后取由n条轨迹组成的轨迹条横切面的半径。如下图所示: 上传图2 一般采用模型的控制(Model Based Control)来提高轨迹精度。ABB公司对其Quick Move和True Move进行了对比演示,在使用模型控制后,可保证机器人在系统允许的任何速度下保持非常高的轨迹一致性。

工业机械手的组成、机能、作用有哪些?

工业机械手的机能 机械手的机能就是指它具有完成人们预定作业所需要的能力。运动机能是指机械手完成预定工艺操作应具有的运动自由度,以及所能到达的活动范围。同时还要求机械手具有对机械手的抓放、定向、工艺操作和行走的能力等。 通用机械手应根据作业的要求,设计成具有完善的运动机能,即它的动作要接近于人手操作时的某些运动机能,以适应广大作业范围的需要。 专用机械手则仅赋予部分的运动机能,可按照工艺操作的需要来确定。 机械手又应具有一定的物理机能如载荷能力、运动速度、持续工作能力以及工作的准确性和稳定性等性能。此还应具有耐热、耐腐蚀的能力,以适应工艺操作的需要和具体的工作环境。 机械手的另一个要机能就是控制机能。对专用机械手而言,是指能自动完成作业程序的能力。但对于一般的通用机械手其控制性能是指它具有自动地、或被动地变换程序的能力,即按照指令能自动地、再现地完成规定的动作程序的机能。 工业机械手作用 机械工业中,应用机械手的意义: ⑴   可提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 ⑵  可改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 在一些简单、重复,特别是较笨重的操作中,以机械手代替人进行工作,可以避免由于操作疲劳或疏忽而造成的人身事故。 ⑶  可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。 工业机械手系统组成 工业机械手主要由执行机构、驱动机构、和控制系统三大部分组成。 (1)  执行机构 机械手的执行机构可以分为手部、手臂和躯干等三部分。手部一般安装在手臂的前端其构造是模仿人的手指。手臂可以分为无关节臂和有关节臂,其主要作用是引导手指准确地抓住工件,并运送到所需要的位置上。躯干是安装手臂、动力源和执行机构的支架。 (2)  驱动机构 机械手的驱动机构主要有四种:液压驱动、气压驱动、电气驱动和机械驱动。其中以液压、气动用的最多,电动和机械用的较少。 (3)  控制系统 机械手控制的要素包括工作顺序、到达位置、动作时间、运动时间、运动速度和加减速度等。机械手的控制可以分为点位控制、连续轨迹控制、力控制和智能控制方式等。

直线电机结构及工作原理

进入新时期以来,我国在各生产业技术方面也投入了大量的精力和物力,采用先进的科学技术,利用直线电机对电能的直接转换,打破了传统的中间传动机构,同时也有效的降低了电力系统的损坏几率,为现代直线电机指引了发展方向,实现关键控制技术的信息化管理,进一步提升直线电机在各生产领域中的重要性。 直线电机的结构 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初级和次级之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理 设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应电动机。初级做得很长,延伸到运动 所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动。通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设引起涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将按费来明法则产生连续的推力F。 此外,直线电机的类型复杂,结构方式也较为多样化,可分为扁平型结构、圆筒型结构和弧形结构等,应用范围最广的就属扁平型结构电机,其结构方式又可分成单边型结构和双边型结构,可以有效的增强电机法向力,提升电机速度,同时也对电机的结构和安装带来一定的影响。 直线电机的特点 1. 高速响应。由于系统中直接取消了一些响应时间常数较大的,如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 2. 定位精度高。直线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。 3. 传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 4. 速度快、加减速过程短。 5. 行程长度不受限制。在导轨上通过串联直线电机,就可以无限延长其行程长度。 6. 动安静、噪音低。由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 7. 效率高。由于无中间传动环节,消除了机械摩擦时的能量损耗。 直线电机的应用 直线电机主要应用于三个方面: 1.应用于自动控制系统,这类应用场合比较多; 2.作为长期连续运行的驱动电机; 3.应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 U槽无刷直线电机可以直接驱动,无需将转动转为线性运动,机械结构简单可靠。电机运行超平稳,无齿槽效应,动态响应速度极快,惯量小,加速度可达20G,速度达到10-30m/s,低速1μm/s时运动平滑,刚性高,结构紧凑,可选配直线编码器做高精度位置控制,其位置精度取决于所选编码器。 定子轨道可以按需要连接,因而理论上电机长度不限。电机动子与定子不接触运动,没有采用普通丝杆滚珠和皮带等传动的磨损、卡死、背隙问题,因此我们的直线电机可以达到免维护长期工作。 此类直线电机特别适用于:机器人、致动器、直线平台、光学光纤排列定位、精密机床、半导体制造、视觉系统、电子元件接插、工厂自动化等对运动系统的速度和精度同时要求较高的应用场合。

直线模组的基础知识

在直线模组中有很多的参数,那么这些参数有什么用呢?而且很多的参数大部分人都看不懂,今天就给大家介绍一下直线模组中的一些 基础的知识,同时还解释一些基本数据的作用比如:直线模组的最大载荷,寿命,基本载荷,额定载荷,等这些都是基础的知识,也是都必 须掌握的,因为在采购直线模组的时候这些数据都非常的重要。 基础的知识,同时还解释一些基本数据的作用比如:直线模组的最大载荷,寿命,基本载荷,额定载荷,等这些都是基础的知识,也是都必 须掌握的,因为在采购直线模组的时候这些数据都非常的重要。 直线模组 直线模组容许静力矩:方向与大小一定的情况下的静力矩,在承担最大力的受力面上,滚动面和滚动体形变为滚动体半径的0.0002倍。 直线模组 额定载荷:在工作中,不影响机件工作的载荷量,通常情况下都会在不同型号下的载荷表中。这是重要参数之一。 直线模组 寿命:直线模组导轨受到滚动体或者其他物体的作用力,使得表面脱落影响精度。脱落一般是由材料的滚动疲劳引起。直线模组导轨的不恰当使用、摩擦的加剧、腐蚀、生锈都会降低直线导轨的使用寿命。 直线模组 导轨具有两种类型的基本额定载荷:一种是计算基本寿命的(C);一种是定义静态状态下的最大载荷量的(CO)。 直线模组 最大载荷(CO):直线模组导轨如果负载了超过最大载荷量的物体,与滚动物体接触时,两者会发证不可逆转的形变。发生形变会引起直线导轨的运动不平稳,严重影响精度。 直线模组 基本额定载荷(C):指的是相同条件下的同一批导轨运行时,L为50km。在方向大小不变的情况下,直线模组导轨负载可以完成这一运动的最大的量。

直线电机的优点和缺点有哪些?

直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,世界许多国家都在研究、发展和应用直线电机,使得直线电机的应用领域越来越广。 直线电机可直接驱动负载作直线运动,无需回转式电机在转换成直线运动时所需的一套转换机构,直线电机也可直接驱动盘式机械作低速旋转运动而无需齿轮变换装置,相较于传统的旋转电机,直线电机有以下优势: 1.结构简单 由于直线电机不需要把旋转运动变成直线运动的附加装置,因而使得系统本身的结构大为简化,重量和体积大大地下降。 2.高精度 在需要直线运动的地方,直线电机可以实现直接传动,因而可以消除中间环节所带来的各种定位误差,故定位精度、重复精度,通过位置检测反馈控制都会较“旋转伺服电机滚珠丝杠”高,且容易实现。直线电机定位精度可达±2μm,甚至更高。而“旋转伺服电机滚珠丝杠”最高只能达到10μm。 3.高速度 直线电机在速度方面具有相当大的优势,直线电机速度达到5m/s时,加速度达到10g;而滚珠丝杠速度为2m/s时,加速度为仅为1.5g。从速度上和加速度的对比上,直线电机具有相当大的优势,而且直线电机在成功解决发热问题后速度还会进一步提高,而“旋转伺服电机滚珠丝杠”在速度上却受到限制很难再提高较多。 4.安全可靠、寿命长 直线电机可以实现无接触传递力,机械摩擦损耗几乎为零,所以故障少,免维修,因而工作安全可靠、寿命长。滚珠丝杠则无法在高速往复运动中保证精度,因高速摩擦,会造成丝杠螺母的磨损,影响运动的精度要求。对高精度的需求场合无法满足。 5.适应性强 直线电机的线圈可以用环氧树脂封装成整体,具有较好的防腐、防潮,便于在潮湿、粉尘和有害气体的环境中使用,而且可以设计成多种结构形式满足不同情况的需求。 6.运动噪声低 直线电机驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足缺点,使机床的性能大大提高。其他应用行业也得到广泛的应用。 直线电机的缺点: 1.直线电机的耗电量大 尤其在进行高荷载、高加速度的运动时,机床瞬间电流对车间的供电系统带来沉重负荷。 2.发热量大 固定在工作台底部的直线电机动子是高发热部件,安装位置不利于自然散热,对机床的恒温控制造成很大挑战。 随着高速加工技术的迅速发展,对传动及控制系统的要求越来越高,使直线电机驱动技术的研究力度在逐步加大。现在直线电机的许多缺点已经被克服,直线电机的动力性能也更加的卓越。直线驱动技术的研究既是技术向更高更快发展的趋势,同时也更能满足市场需要,带来更大的经济效益,成为未来发展的必然趋势。

滚珠丝杆的安装方式有哪些?

伺服或步进电机连接滚珠丝杆,这在自动化机器里面是常见的一种结构,运动方式是将圆周转动变为直线运动。一般CNC拖板和一些精密直工作台大都是由伺服或步进电机驱动。但是这个简单的驱动,机构非常简单,主要部件为:电机、丝杆、丝杆锁紧螺母轴承座、轴承等等。但是一般丝杆均为往复式工作,要求精度非常高,有的重复精度高达0.001mm。 高精度的机构,同样要有合理的结构设计,我在这里分享一下本人的一部分经验。 一个垂直高速往复动作的钻主轴拖板,积算式运动方式。要求深度精度为0.005mm。 零件选用:P4级2504滚珠丝杆、7003C/DB角接触轴承、弹性连轴器、步进电机。 关键的这里有一个超级贵的零件——7003C/DB角接触轴承。本轴承尺寸17*35*20(单个为10),成对安装,价格为800元1对。 背靠背角接触轴承能够承受来自二个轴向方向的力,同时能够承受高速旋转和一定的径向力,因此在滚珠丝杆上是很常见一种轴承。角接触轴承的安装方式是很讲究的,不同的安装方向,所承受的力和刚性也不一样的。因此这在设计选型和安装时要特别注意。 关于角接触轴承的安装和注意事项,可以上网查找一下轴承厂家的资料。 下图是基本结构: 7003C/DB角接触轴承是可以调的,精度可以达到0.001mm.精度等级大于P4级。 背靠背安装方式,丝杆的另一端为悬空,如果要另一端装轴承,那么就应该安装7003CT的轴承,CT尾号表示为串联装。串联装轴承只能承受一个方向的力。 上述的机器为钻孔机。垂直下降,钻不锈钢,加工精度深度要求为0.01,而本机的实际精度为0.005。丝杆行程100mm,步进电机速度400转左右。对于精密机器来说,精度的保证是多方面的,不能仅靠某一样来保证。丝杆进给的机器一般来说保证精度的地方有: 1、丝杆 2、导轨 3、安装方式 4、其它机械方面 5、控制程序。 以上缺一不可。

六轴工业机器人的控制方式及特点有哪些?

6轴工业机器人的特点主要有以下几方面: (1)可编程:6轴工业机器人最大特点是柔性启动化,柔性制造系统中的一个重要组成部分。工业机器人可随其工作环境变化以及加工件的变化进行再编程,适合于小批量多品种具有均衡高效率的柔性制造生产线的应用。 (2)拟人化:6轴工业机器人结合机器人与人的特点。在6轴工业机器人的结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。其传感器提高了工业机器人对周围环境的自适应能力。 (3)通用性:一般6轴工业机器人在执行不同的作业任务时具有较好的通用性。当然也有专用的工业机器人。 (4)机电一体化:6轴工业机器人是机械学和微电子学的结合-机电一体化技术。工业机器人具有各种传感器可以获取外部环境信息,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都是微电子技术的应用,特别是计算机技术的应用密切相关。 六轴关节工业机器人的研发设计及制造已经有好几十年的历史了,整个工业机器人的研发制造体系较为完善,各研发厂家在相互竞争中可以相互模仿、改善、不断推陈出新。博立斯多年来坚持投入研发、生产各类自动化设备,其中包括:数控车床机械手、上下料机械手、机床机械手、冲压机械手、6轴工业机器人、4轴工业机械手、多轴工业机器人等。多年来不断推陈出新,研发生产的自动化设备帮助许多企业解决了生产难题,备受企业的喜爱。 业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。 6轴工业机器人的全部控制由一台微型计算机完成。另一种是分散(级)式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。根据作业任务要求的不同,机器人的控制方式又可分为点位控制、连续轨迹控制和力(力矩)控制。

直线模组的主要配件有哪些?

直线模组是一种直线传动装置,其应用广泛实用性强,一直备受工业行业所青睐。随着我国工业的发展之迅速,直线模组的需求量也在不断的日益增加。 滚珠丝杆 滚珠丝杠是直线模组上最常使用的传动元件,其主要功能是将旋转运动转换成线性运动,或将扭矩转换成轴向反复作用力,同时兼具高精度、可逆性和高效率的特点。 同步带 同步带是直线模组上最常使用的传动元件,同步带传动是由一根内周表面设有等间距齿形的环行带及具有相应吻合的轮所组成。它综合了带传动、链传动和齿轮传动各自的优点。转动时,通过带齿与轮的齿槽相啮合来传递动力。 直线导轨 直线导轨又称线轨、滑轨、线性导轨、线性滑轨,用于直线往复运动场合,且可以承担一定的扭矩,可在高负载的情况下实现高精度的直线运动。在大陆称直线导轨,台湾一般称线性导轨,线性滑轨。 联轴器 扭转刚性高,能准确控制轴的旋转,可进行高精度控制。采用摩擦结接合进行传递,没有间隙,最合适超精密控制。不锈钢膜片能补偿径向,角向、轴向偏差。顺时针与逆时针回转特性完全相同。夹紧方式固定。