气动系统如何节能?

气动系统如何节能? 多种多样的气动系统在自动化和半自动化生产中发挥了重要作用。随着气动技术的不断应用,系统消耗的能源也不断地增长,因此在气动技术的应用中,如何节约能源是十分迫切需要解决的问题。 气动系统中的执行元件——气缸是用压缩空气来推动的,而做过功但还具有一定能量的压缩空气却直接地排到大气中。把这部分压缩空气通过几种气动元件的有效组合收集起来,让它再次做功,推动气缸活塞运行,完成生产中某一工艺过程,这样就大大减少了压缩空气的用量,节省了能源。 (1)动作过程 压缩空气由气源通过二位三通阀4进入气缸左腔,气缸活塞向右运行,气缸右腔的空气通过二位五通阀3排空。这时二们二通阀2是断开的。当活塞运行到缸右端,二位三通阀换向切断气源,这时气缸左腔中的压缩空气通过二位三通阀和单向阀5流入气罐6,直气罐内的压力和气缸左腔的压力相等时流入停止。此时二位二通阀仍然是断开的。之后二位二通阀和二位五通阀同时换向气罐内的低压空气通过二位五通阀进入气缸右腔,同时气缸左腔的低压空气通过二位二通阀和二位五通阀排空、气缸活塞向左运行直至气缸左端。然后二位二通阀、二位三通阀和二位五通阀同时换向,气缸左腔接通气源,右腔排空、气缸活塞完成了一个运行周期,系统回到初始状态。 气缸运行一个周期以后,气罐内的压力会改变:开始时气罐内压力为零,以后每运行一个周期后气罐内的压力会逐步上升,最终达到一个常数。 (2)气罐容积的选择 气罐容积的大小直接影响气缸的回程力,太大了压力低,回程力小,甚至气缸活塞不能回程;太小了气缸回程行程不够,气缸活塞运行不到气缸端部,达不到生产工艺的要求。因此选择气罐与气缸内腔容积之比是非常重要的。根据气缸使用的压力通常为0.4~0.6MPa之间和气缸的起动压力在50kPa左右,气罐和气缸内腔的容积之比为1:1比较合适。 (3)节能气动系统应用 1)本节能气动系统可应用于所有使用气缸的气动系统中,尤其是在大缸径、长行程的气动系统中,节能效果更显著。 2)如果把该系统中6个元件巧妙地组合在一起,就成为体积较小的节能气缸。 3)如果气缸是双向负载,既利用气缸的推力又利用气缸的拉力,则将该系统稍做改变,收集气缸排出的压缩气体做为空气压缩机的部分气源,这样就提高了空气压缩机的效率,节约了能源。  

气动技术的应用水平如何?

气动技术的应用水平如何? 为提高工业自动设备的可靠性,气动元件向高质量、高寿命和高精度方向发展。如电磁阀的寿命由过去去10~50万次提高到目前3000~5000万次,气缸寿命由300~500km提高到现在的2000~6000km 1)过滤器一般的过滤精度为1μm,现在已有0.3μm和0.01μm的精密滤芯,相应的除尘率分别达99.9%和99.9999%,后者除油率达0.1mg/m^3除臭率达9.98% 2)为提高生产率,气动元件向高速度、高输出力方向发展。普通气缸运动速度由1m/s提高到3m/s高速气缸达15m/s,近年来使用14MPa的氮气作气源,高速气缸速度可达30~60m/s,气动元件的工作压力为1.6MPa。 3)气动元件向无油润滑元件方向发展,以适应电子、食品、医药、纺织工业无污染的要求。 4)机电一体化是当前技术发展的趋势,为了使微型计算机、程控器能与气缸组成机电一体化的气动系统,气动元件向低功耗、小型化和轻型化方向发展。功耗只有1W甚至0.5W的小而轻的电磁阀,可与微型计算机和程控器直接连接,也可与电子元件一起安装在印制电路板上,通过手板接通气、电回路,构成各种功能的控制组件。

为什么气动元件和气动控制系统要维护保养?

为什么气动元件和气动控制系统要维护保养? 对气动元件和气动控制系统的维护保养应用早进行,不应该拖延到问题已经在设备的某个部分产生,并需要修理时才进行。为确保设备寿命,以及单个元件和整个控制系统的工作可靠性,首要考虑的问题是应对它们进行预防性维护保养。定期对系统维护保养不会带来任何不必要的花费,相反它有利于减小因空气泄漏、修理和由于故障或损坏系统停止使用造成的对生产所带来的损失。如果在工厂或车间安装一个大型气动系统,应指派在气动技术方面经过专门培训的合格人员来维修保养。当维护保养工作量较小以及一个维护保养人员工作量不饱满时,建议将维护保养工作交给车间人员管理。这样,他们只需用部分工作时间就可以完成设备的维护保养。特别是坚持规章制度办事。

为什么对气动控制系统单独编制检修表?

为什么对气动控制系统单独编制检修表? 系统维护保养通常根据维护保养检查表进行,预先计划的工作绝不能轻易忽视。在编制维护保养检查表时,应参照设备和元件生产厂的产品说明书和有维护保养技术资料。例如,对于压缩机装置和空气管道系统应编制联合检查表,而对于气动控制系统或气控机器应单独编制检查表。作为操作指南,检查表中应含有维护保养过程和说明。在维护保养中,明确多长时间检查一次都应有详细记录供检修用。  

油压缓冲器工作原理及作用

工业油压缓冲器: 在市场日益竞争下,使用自动化机械并提高其作业效率是产业的一大课题,但高速运作的同时,也产生了震动及噪音,早期常用的方式为加上胶垫或弹簧,但相较其对能量吸收及释放的能力,CEC油压缓冲器显然更能解决这些困扰,其功能为将移动中物体所产生之动能转换为热能并释放於大气中,故可在每一次的动作中将物体平稳有效的停止,过去许多厂商为节省成本,只使用PU胶、 弹簧等来作缓冲,但往往造成效果不彰,噪音依旧,效率无法提升;选择使用CEC油压缓冲器将可有效的解决因缓冲不良的弊端,使机械提高效率增加产能,使机器的寿命延长降低维修成本,使机器的 运作稳定维持产品品质,使机器的操作更安全避免意外,使工作环境改善提高人员效率增加企业的竞 争优势。 CEC油压缓冲器能有效的吸收高速运动产生的震动及噪音,将动能转换为热能并释放于大气中,故可在每一次的动作中将物体平稳有效的停止,过去许多厂商为节省成本,只使用PU胶、 弹簧等来作缓冲,但往往造成效果不彰,噪音依旧,效率无法提升;选择使用CEC油压缓冲器将可有效的解决因缓冲不良的弊端,在自动化机械作为中可减少震动及噪音,将移动中物体所产生之动能转换为热能并释放于大气中,在动作中将物体平衡有效的停止;使机械提高效率增加产能,使机器的寿命延长降低维修成本,使机器的运作稳定维持产品品质,使机器的操作更安全避免意外,使工作环境改善提高人员效率增加企业的竞争优势。使用CEC油压缓冲器将可有效的解决因缓冲不良的弊端,使机械提高效率增加。 SC series:不可调(自动补偿)缓冲器 FC series:可调缓冲器 SCS series:Stop Cylinder 缓冲器 SCD series:双向缓冲器

气动元件的分类及市场发展趋势

气动元件发展趋势主要有以下几个方面: 体积更小,重量更轻,功耗更低.在电子元件、药品等制造行业中,由于被加工件体积很小,势必限制了气动元件的尺寸,小型化、轻型化是气动元件的第一个发展方向。国外已开发了仅大姆指大小、有效截面积为0.2mm2的超小型电磁阀。能开发出外形尺寸小而流量较大的元件更为理想。为此,相同外形尺寸的阀,流量已提高2~3.3倍。有一种系列的小型电磁阀,其阀体宽仅10mm,有效面积可达5mm2;宽15mm,有效面积达10mm2等。 国外电磁阀的功耗已达0.5W,还将进一步降低,以适应与微电子相结合。 气源处理组合件,国内外大多采用了积木式的砌块结构,不仅尺寸紧凑,而且结合、维修都很方便。 执行元件的定位精度提高,刚度增加,活塞杆不回转,使用更方便.为了提高气缸的定位精度,附带制动机构和伺服系统的气缸应用越来越普遍。带伺服系统的气缸,即使供气压力和所负的载荷变化,仍可获得±0.1mm的定位精度。 气动技术是以压缩空气为介质来传动和控制机械的一门专业技术。由于它具有节能、无污染、高效、低成本、安全可靠、结构简单等优点,广泛应用于各种机械和生产线上。过去汽车、拖拉机等生产线上的气动系统及其元件,都由各厂自行设计、制造和维修。 气动技术应用面的扩大是气动工业发展的标志。 气动元件的应用主要为两个方面:维修和配套。过去国产气动元件的销售要用于维修,近几年,直接为主要配套的销售份额逐年增加。国产气动元件的应用,从价值数千万元的冶金设备到只有1~2百元的椅子。铁道扳岔、机车轮轨润滑、列车的煞车、街道清扫、特种车间内的起吊设备、军事指挥车等都用上了专门开发的国产气动元件。这说明气动技术已“渗透”到各行各业,并且正在日益扩大。 我国的气动工业虽然达到了一定规模与技术水平,但是与国际先进水平相比,差距甚大。我国气动产品产值只占世界总产值的1.3%,仅为美国的1/21,日本的1/15,德国的1/8。这与10多亿人口的大国很不相称。从品种上看,日本一家公司有6500个品种,我国只有它的1/5。产品性能和质量水平的差距也很大。 由于气动技术越来越多地应用于各行业的自动装配和自动加工小件、特殊物品的设备上,原有传统的气动元件性能正在不断提高,同时陆续开发出适应市场要求的新产品,使气动元件的品种日益增加, 在国际展览会上,各种异型截面缸筒和活塞杆的气缸甚多,这类气缸由于活塞杆不会回转,应用在主机上时,无须附加导向装置即可保持一定精度。此外还开发了不少带各种导向机构的气缸和气缸滑动组件,例如具有两根导向杆的气缸、双活塞杆双缸筒气缸等。 气缸筒外形已不限于圆形、而是方形、米字形或其它形状,在型材上开了导向槽、传感器和开关的安装槽等,让用户安装使用更方便。 多功能化,复合化.为了方便用户,适应市场的需要开发了各种由多只气动元件组合并配有控制装置的小型气动系统。 如用于移动小件物品的组件,是将带导向器的两只气缸分别按X轴和Z轴组合而成。该组件可搬动3kg重物,配有电磁阀、程控器,结构紧凑,占有空间小,行程可调整。又如一种上、下料模块,有七种不同功能的模块形式,能完成精密装配线上的上、下料作业,可按作业内容将不同模块任意组合。 还有一种机械手是由外形小并能改变摆动角度的摆动气缸与夹头的组合件,夹头部位有若干种夹头可选配。 与电子技术结合,大量使用传感器,气动元件智能化.带开关的气缸国内已普遍使用,开关体积将更小,性能更高,可嵌入气缸缸体;有些还带双色显示,可显示出位置误差,使系统更可靠。用传感器代替流量计、压力表、能自动控制压缩空气的流量、压力,可以节能并保证使用装置正常运行。 气动伺服定位系统已有产品进入市场。该系统采用三位五通气动伺服阀,将预定的定位目标与位置传感器的检测数据进行比较,实施负反馈控制。气缸最大速度达2m/s、行程300mm时,系统定位精度±0.1mm。日本试制成功一种新型智能电磁阀,这种阀配带有传感器的逻辑回路,是气动元件与光电子技术结合的产物。它能直接接受传感器的信号,当信号满足指定条件时,不必通过外部控制器,即可自行完成动作,达到控制目的。它已经应用在物体的传送带上,能识别搬运物体的大小,使大件直接下送,小件分流。 更高的安全性和可靠性.从近几年的气动技术国际标准可知,标准不仅提出了互换性要求,并且强调了安全性。管接头、气源处理外壳等耐压试验的压力提高到使用压力的4~5倍,耐压时间增加到5~15min,还要在高、低温度下进行试验。如果贯彻这些国际标准,国内的缸筒、端盖、气源处理铸件和管接头等都难达到标准要求。除耐压试验处,结构上也作了某些规定,如气源处理的透明壳外部规定要加金属防护罩。 气动元件的许多使用场合,如轧钢机、纺织流水线等,在工作时间内不能因为气动元件的质量问题而中断,否则会造成巨大损失,因此气动元件的工作可靠性显得非常重要。在航海轮船上,使用的气动元件不少,但能打进这个领域的气动元件厂不多,原因是其对气动元件的可靠性要求特别高,必须通过有关国际机械的认证。 向高速、高频、高响应、高寿命方向发展.为了提高生产设备的生产效率,提高执行元件的工作速度势在必行。现在我国的气缸工作速度一般在0.5m/s以下。根据日本专家预测,五年以后大部分的气缸工作速度将提高到1~2m/s,有的要求达5m/s。气缸工作速度的提高,不仅要求气缸的质量提高,而且结构上也要相应改进,例如要配置油压吸震器以增加缓冲效果等。电磁阀的响应时间将小于10ms,寿命提高到5000万次以上。 美国有一种间隙密封的阀,由于阀芯悬浮在阀体内,相互不接触,在无需润滑下,寿命高达2亿次。 普遍使用无油润滑技术,满足某些特殊要求.由于环境污染以及电子、医疗、食品等行业的要求,环境中不允许有油,因此无油润滑是气动元件的发展趋向,同时无油润滑可使系统简化。欧洲市场上油雾器已属淘汰的产品,普遍做到了无油润滑。此外,为了满足某些 特殊要求,除臭、除菌和精密过滤器正在不断开发,过滤精度已达0.1~0.3μm,过滤效率已达99.9999%。 针对某些特殊要求,改进和开发气动产品,即可占领一块市场,获得不小的经济效益,这已被大家共识。济南华能气动元器件公司为铁路编组和轮轨润滑的特殊要求开发了气缸和阀,受到了铁道部门的关注。 使用新材料,与新技术相结合.国外开发了膜式干燥器,该干燥器利用高科技的反渗析薄膜滤去压缩空气中的水分,有节能、寿命长、可靠性高、体积小、重量轻等特点、适用于流量不大的场合。 以聚四氟乙稀为主体的复合材料制造的气动密封件能耐热(260℃),耐寒(-55℃)和耐磨,其使用场合越来越多。 为了提高质量,真空压铸、氢氧爆炸去毛刺等新技术正在气动元件制造中逐步推广。 便于保养、维修和使用.国外正在研究使用传感器实现气动元件及系统具有故障预报和自诊断功能。 从上述的气动技术发展方向可知,在气动产品的开发上我们有许多工作可做。任何一个气动元件厂,即使其规模不大,只要突破一个方面,并保持技术领先,就可以在市场上占一席之地,在激烈的竞争中获得生存和发展。

气动的基本原理及优点

何谓气动,所谓气动就是利用空气压力来产生动力,进行的一系列动作。 在其他的书中是这样解释的:气动是以旋转作用和撞击作用所产生的空气压力作为动力源,带动机械完成伸缩或旋转动作。 气动元件就是以气体的压强和膨胀力来做功的元件,它的本质是将压缩空气的弹性是能转变为机械能,例如气缸、气动马达、蒸汽机都是气动元件。  气动的基本原理 气动的基础是气体的可压缩性,当气体被压缩储存时,会因体积的减小而产生弹性势能,这和弹簧被压缩后产生的弹力是相似的。气动工具将压缩气体作为动力源,释放压缩气体时所产生的能量会带动气动工具做功,完成操作。 气动元件包含有控制元件和执行元件,控制元件负责在压缩空气释放时控制它的运动方向,而执行元件负责完成伸缩、旋转等动作。 气动元件工作时,释放的压缩气体会被排入大气,由于压缩气体只是空气或惰性气体,不会对周围环境造成任何破坏。 气动的优缺点 气动是以空气和惰性气体作为工作介质,空气的供给量充足而且无需成本。更重要的是,空气和惰性气体对周围环境不造成污染,是清洁介质。气动技术可以做到远距离供气,减少本地机械设备,节省厂房空间。 气动技术的缺点在于,气体的压缩性使得气动元件的动作速度,容易受到负载变化的影响。气动设备的输出力能满足大部分的工业操作需要,但是和液动设备相比,气动设备的输出力还是要小一些。另外,气缸在低速运动时,受摩擦力影响较大,稳定性稍差

如何提高气动元件的使用寿命

我们在使用气动元件时如何提高气动元件的使用寿命呢?气动元件的正确使用和维护保养是非常重要的。 以下是对气动元件的正确使用和维护保养的描述: 一套气动装置,如果不注意维护保养工作,就会过早损坏或频繁发生故障,使装置的使用寿命大大降低,在对气动装置进行维护保养时,应针对发现的事故苗头,及时采取措施,这样可减少和防止故障的发生,延长元件和系统的使用寿命。因此,企业应制定气动装置的维护保养管理规范,加强管理教育,严格管理。 维护保养工作的中心任务是保证供给气动系统清洁干燥的压缩空气,保证气动系统的气密性,保证油雾润滑元件得到必要的润滑,保证气动元件和系统得到规定的工作条件(如使用压力,电压等),以保证气动执行机构按预定的要求进行工作。 油雾器最好选用一周补油一次的规格,补油时,要注意油量减少情况。若耗油量太少,应重新调整滴油量,调整后滴油量仍减少或不滴油,应检查油雾器进出口是否装反,油道是否堵塞,所选油雾器的规格是否合适。 每月每季度的维护工作应比每日和每周的维护工作更仔细,但仍限于外部能够检查的范围。其主要内容是:仔细检查各处泄露情况,紧固松动的螺钉和管接头,检查换向阀排出空气的质量,检查各调节部分的灵活性,检查指示仪表的正确性,检查电磁阀切换动作的可靠性,检查气缸活塞杆的质量以及一切从外部能够检查的内容。 维护工作可以分为经常性的维护工作和定期的维护工作。前者是指每天必须进行的维护工作,后者可以是每周,每月或每季度进行的维护工作。维护工作应有记录。维护工作应有记录,以利于今后的故障诊断和处理。 检查漏气时应采用在各个检查点涂肥皂液等办法,因其显示漏气的效果比听声音更灵敏。 检查换向阀排出空气的质量时应注意如下三方面:一是了解排气中所含润滑油是否适度,其方法是将一张清洁的白纸放在换向阀的排气口附近,阀在工作三至四个循环后,若白纸上只有很轻的斑点,表明润滑良好,二是了解排气中是否含有冷凝水,三是了解不该排气的排气口是否有漏气。少量漏气预示着元件的早期损伤(间隙密封阀存在微漏是正常的)。若润滑不良,应考虑油雾器的安装位置是否合适,所选规格是否恰当,滴油量调节得是否合理及管理方法是否符合要求,若有冷凝水排出,应考虑过滤器的位置是否合适,各类除水元件实际和选用是否合理,冷凝水管理是否符合要求。泄露的主要原因是阀内或缸内的密封不良,气压不足等所致。此系密封阀的泄露较大时,可能是阀芯,阀套磨损所致。 气缸活塞杆常露在外面。观察活塞杆是否被划伤,腐蚀和存在偏磨。根据有无漏气,可判断活塞杆与前盖内的导套,密封圈的接触情况,压缩空气的处理质量,气缸是否存在横向载荷等。 像安全阀,紧急开关阀等,平时很少使用。定期检查时,必须确认它们的动作可靠性。 让电磁阀反复切换,从切换声音可判断阀的工作是否正常。对交流电磁阀,若有蜂鸣声,应考虑动铁心与静铁心没有完全吸合,吸合面有灰尘,分磁环脱落或损坏等。

气动马达的使用介绍

以下是对气动马达的使用所需要满足条件以及使用的规范其次配管注意事项的说是介绍: 1 使用条件: 使用动力:压缩空气(经冷冻干燥处理为标准) 最高操作压力:7kg/cm2(100psi)正常使用压力:7kg/cm2 周围温度:-10℃~+70℃在不结冰(冻)状态下才可使用 润滑油:空气入口经注油器给油,使用ISO VG32润滑油,每分钟1~2滴 马达缸体内部每年更换加注LUGREASELS-1EH黄油 2 使用规范:有负荷可以连续使用,无负荷不可连续使用。 使用注意事项: 气动马达传动轴心连接不当时,会形成不良动作并导致故障 发现马达故障时,立即停止使用,并由专业人员进行检查、调整、维修 空气供应来源要充足,以免造成转速忽快忽慢 3 配管注意事项: 气动马达之主要故障原因,是由于灰尘、杂质等异物进入气室造成,所以配管前必须先用压缩空气或其它方式将管内残留异物清除。 使用时应以空气马达原始设之空气入口大小为配管标准。 4 运转注意事项: 确认旋转方向是否正确,及被驱动体与轴心之间有无不正确安装 气动马达速度之控制和稳定性,要由空气端进行调整,排气端才不会产生背压 马达不可在无负荷状态下连续旋转或高速旋转,连续无负荷空转时,气动马达会降低使用寿命或超速损坏 负荷工作(正常使用)时,慢慢旋转空气调压器或针阀式调速阀提高空气压力,到达需要的旋转数,若强制使用超过最大压力时气动马达会损坏,故请勿超压使用。 5 保养维修条例: 保固期内因使用、保管不当或其它人为因素引起的故障,本公司负责提供有偿服务。保固期外,本公司负责继续向您提供有偿服务 由于运输、保管不当或未按使用说明书规定方法使用操作,自行拆动产品零件……等原因造成的损坏,则不在保固范围之内 消耗品件不在保固范围内

空气过滤器如何维护保养?

空气过滤器如何维护保养? (1)空气过滤器的作用 内燃机使用寿命的长短,取决于动配合磨损速度快慢。涉及磨损的因素很多,其中颗粒磨损所有磨损因素的首要因素。造成颗粒磨损的颗粒来源,基本上是由内燃机所用的介质(空气、燃油、润油)带进的,过滤器就是消除介质中颗粒物的部件。 空气过滤器的使用过程实质就是大气中的灰尘颗粒在滤材上逐渐积累的过程。过滤器使用时间长短,要由环境空气的含尘量决定。空气中含尘量多,使用时间就短;空气中含尘量少,使用时间就长。 (2)空气过滤器的维护保养及更换 当空气过滤器被砂尘堵塞以至不能满足发动机所需要空气的体积流率时,发动机式工作状态会表现以下症状:轰鸣声发闷(这是燃料燃烧过程中后期缺氧,延长了燃烧时间,工作压力下降,排气门开启瞬间压差小所致。)加速反应迟缓(这是因为进气量不够,压缩行程的正时点火压力不够)。工作时表现无力(这是因为进气量不够气缸内缺氧,整个燃烧时间后移,活塞最大做功行程阶段与燃料燃烧时间不匹配)。水温相对升高(这是因为整个工作爆发时间后移,活塞进入排气阶段,燃烧仍在进行)。加速时尾气烟度变浓(这是因为进气量不足,使燃气的混合浓度变浓,在燃烧时燃烧不完全)。内燃机在工作中,出现上述症状,用户(驾驶员、机手)只要发现两种以上的异常反应,即可基本判定空气过滤器被堵。随即可以拆下空气过滤器的滤芯、清理聚集在滤材上的灰尘。空气过滤器保养或更换后,内燃机工作的异常症状,即该消失。 当滤材内表面呈灰黑色时,表明灰尘微粒已穿过滤材,变色的实质就是部分灰尘微粒在静电的作用下排列在滤材表面,从而造成颜色的变化。 (3)正确使用空气过滤器的意义 1、减少气缸壁磨损,延长机器寿命。 2、降低使用成本:当内燃机工作性能稳定,燃料消耗量就不会超过设计标准,不会造成零件非正常使用,从而减少零部件的损坏率,减少修理、换件费用。 3、提高工作可靠性:内燃机工作性能稳定,内燃机各部位组件工作条件稳定,整体工作性能好,无局部超负荷工作,损坏率大大减小。 4、控制废气排放质量:由于内燃机工作状况良好,燃气混合浓度适当、燃烧温度和燃烧压力稳定,无窜气、无烧润滑油现象,废气排放质量就不会变坏。

气动马达的特点

气动马达的特点 气动马达与和它起同样作用的电动机相比,其特点是壳体轻,输送方便;又因为其工作介质是空气,就不必担心引起火灾;气动马达过载时能自动停转,而与供给压力保持平衡状态。由于上述特点,因而气动马达广泛应用于矿山机械及气动工具等场合。 气动马达与液压马达相比: 1)优点 (1)工作安全,具有防爆性能,同时不受高温及振动的影响; (2)可长期满载工作,而温升较小; (3)功率范围及转速范围均较宽,功率小至几百瓦,大至几万瓦;转速可从每分钟几转到上。 (4)具有较高的起动转矩.能带载启动; (5)结构简单,操纵方便,维修容易,成本低 2)缺点 (1)速度稳定性差; (2)输出功率小,效率低,耗气量大; (3)噪声大,容易产生振动。

压力控制阀如何分类?

压力控制阀如何分类? 气阀按其作用和功能可分为三大类: (1)减压阀(又称调压阀)用来调节或控制气压的变化,并保持降压后的压力值固定在需要的值上,确保系统压力的稳定性的阀。 (2)安全阀(也称溢流阀)用于保持一定的进口压力,如为了保证气动回路或贮气缺罐安全,当压力超过规定值时,需将部分空气放掉的阀。 (3)顺序阀 在有两个以上分支回路时,根据压力的大小,使执行元件按设计规定的程序进行顺序动作的阀。 压力控制阀分为:减压阀、安全阀和顺序阀。减压阀分为直动力式(人工操纵、机械操纵)和先导式(内部先导、外部先导)。直动式分为:溢流式、非溢式和恒量排气式。先导式分为:溢流式和洹量排气式。安全阀分为:直动式(人工操纵、机械操纵)和先导式(内部先导、外部先导)。

气动马达的优点与应用

气动马达的原理及优点: 气动马达是将压力能转换为机械能的能量转换装置,特点为防爆、负载安全、绝不烧损、无段速度控制、紧急动力驱动、瞬间正逆转向、安装灵活、可在电动马达、油压马达、步进马达、伺服马达不适用场合下使用。多种减速比可供选配。 从气动马达的特性可见,它适用于需要安全、无级调速、经常改变旋转方向、起动频繁以及防爆、负载起动、有过载可能性的场合。在空气潮湿、高温以及不利于人工直接操作的地方,也适用采用气动马达。它可以和在恶劣工作条件下操作的设备配合使用。 当要求多种速度运转、瞬时起动和制动,或可能经常发生失速和过负荷的情况时,采用气动马达要比别的类似设备价格便宜、维修简单。 气动马达的应用: 气动马达在矿山机械中用得较多;在专业性成批生产的机械制造厂、油田、化工厂、造纸厂、炼钢厂、开凿隧道及开凿水电站等场合也有使用。例如工厂装配工作机械化所用的气钻、气动螺丝刀(风批)、气动扳手(风扳)、气动砂轮机(风砂轮)、气动磨头(风磨头)、等等气动工具中,都装有气动马达

减压阀的调压方式是什么?

减压阀的调压方式是什么? 减压阀按调压方式可分为直动式减压阀和先导式减压阀。直动式是利用手柄、旋钮或机械直接调节调压弹簧,把力直接加在阀上来改变减压阀输出压力;先导式是利用调节加压腔中压缩空气的压力来代替直动式调节弹簧进行调压的,加压腔中压缩空气的调节一般采用小型直动式减压阀进行。 先导式减压阀可分为内部先导式(又称自控式)减压阀和外部先导式(又称他控式)减压阀两种  

减压阀的排气方式是什么?

减压阀的排气方式是什么? 排气方式可分为溢流式、非溢流式和恒量排气式三种。溢流式减压阀的特点是减压过程中从溢流孔中排出少量多余的气体,维持输出压力不变。非溢流式减压阀没有溢流孔,使用时回路中要安装一个放气阀,以排出输出侧的部分气体,它适用于放气阀,以排出输出侧的部分气体,它适用于调节有害气体压力的场合,可防止大气污染。恒量排气式减压阀能准确地调整压力,一般用于输出压力调节精度要求高的场合。

减压阀的调压范围是什么?

减压阀的调压范围是什么? 用一只减压阀是不能适应一切压力范围的需要的,需根据调压范围来选用减压阀。一般按调压范围可分为低压阀,调压范围0~0.25MPa;中压用阀,调压范围有0~0.63MPa和0~1.00MPa两种;高压用阀,调压范围有0.05~1.60MPa和0.5~2.50MPa两种等。

减压阀的主要调压部分的结构形式是什么?

减压阀的主要调压部分的结构形式是什么? 主要调压部分的结构形式可分为膜片式和活塞式两种。膜片式减压阀为常用的形式,靠膜片上力的平衡作用稳定输出压力;活塞式减压阀是预先决定好活塞行程,当作用在活塞下面的作用力与调压弹簧力和活塞上密封环的摩擦力之和平衡时,减压阀便获得一定的开度面具有一定的出口压力。调节调压弹簧的预压具有一定的出口压力。调节调压弹簧的预压缩量,便可改变出口压力的大小。

减压阀的溢流量大小是什么?

减压阀的溢流量大小是什么? 溢流量大小可分为小溢流量式和大溢流量式两种,而前者用得最普遍,后者只是在特殊情况采用。因为一般溢流式减压阀中的溢流孔孔径为1mm左右,在由高调定值调至低调定值时,必须花费较长时间才能使空气溢流,为了解决这个问题,而要具有大溢流量的溢流结构的减压阀,称为大溢流量式减压阀。

旋转气缸的结构设计与应用

旋转气缸的结构设计与应用          普通气缸一般是缸体本身通过安装附件固定在机座上, 而由活塞往复运动带动活塞杆前进与后退,从而对负载实现推或拉的动作。而旋转气缸则是将缸体本身固定在旋转体上与旋转负载一起旋转, 供气组件是固定不动的。这样的结构与普通气缸的结构是不同的, 如果在一个旋转缸体与不旋转的供气阀之间采用轴承连接, 就可使旋转气缸很灵活地旋转。这样, 气缸在旋转的场合也可应用了。          1.旋转气缸的技术参数如下;        (1) 工作介质干燥的含有油雾润滑的洁净压缩空气。        (2)工作压力0.1-0.8 MPa;        (3)耐压1.2 MPa;        (4)环境相对湿度≤95%        (5)使用环境温度–5~60℃(但在不冻结的情况下);        (6)旋转频率≤10 r/s;        (7)行程≤15mm          2. 旋转气缸的结构分析            旋转气缸的结构见图1 所示。           图中未画出为减小旋转摩擦设置的轴承等零件。        从图1 可知, 序号1—5构成气缸主体部分, 序号6一9构成供气阀部分。序号1 所示的活塞杆与活塞做成整体式, 便于气缸前气腔供气0定位销4: 用于防止活塞及活塞杆相对于缸前盖及缸体转动。也就是说,保证了活塞杆活塞与前盖、缸体组成的气缸主体部分只能与负载一起旋转及与供气阀部分作相对旋转。另外, 阀座阀芯6 也是做成整体形式, 固定于缸体上, 使阀芯一方面作为转轴, 让阀体8 绕着阀芯旋转而不影响气口A 和B 的供气, 另一方面与活塞杆活塞保持相对移动约为行程S这么长的距离,…

Read More

气液增压缸如何维护保养?

气液增压缸如何维护保养? 气液增压缸能将低压空气的能量很方便地转换成高压油的能量,可取代液压泵等复杂的机械压装置。所以在日常工作中必须维护保养好气液增压缸。 1.经常清除装置周围环境的灰尘、污油和脏物等,保持装置清洁卫生。 2.增压缸使用的气体介质必须是经过净化的压缩空气。 3.使用空气的压力值,需在规定的空气压力范围内。 4.增压缸的输出油量,需在指示器刻度内使用,所用液体为30~50号液压油,过滤精度不低于50um,环境温度为5-60℃. 5.工作用油每半年更换一次新油,使用期间如发现油液减少,应及时给予补充。 6.使用中就经常检查有否漏气、漏油现象,运转是否正常,紧固件有无松动。若发现异常现象应用时查找原因,并采取措施排除故障。 7.增压缸暂不使用时,应在温度为10-35℃和相对温度不大于85%的室内妥善保管,防止生绣。

真空吸盘吸力不足的主要原因

真空吸盘吸力不足的主要原因 真空吸盘的电源是由整流器供给的,空载时,整流器直流输出电压为130-140V,负载时不应该低于110V。故障是因为真空吸盘损坏或者整流器输出电压不正常造成的。如果真空吸盘的电源电压不正常,这是因为整流器元件短路或者断路造成的,应该检查整流器的交流侧电压及直流测电压。如果交流测电压正常,而直流输出电压不正常,表明整流器发生元件短路或者断路故障。真空吸盘吸力不足的原因主要如下: 1、由于真空吸盘磁力线圈电感很大,在断开线圈的瞬间,将产生很大的过电压则可能将整流元件击穿; 2、由于半导体整流元件热容量很小,在整流器过载时,元件温度急剧上升,烧坏二极管; 3、整流器元件会老化,会发生退性现象,致使输出电压降低,使真空吸盘的吸力不足。  排除故障时,可用万用电表测量整流器的输出、输入电压、即可判断出故障部位,查处故障元件,更换或者修理,故障即可排除。实践证明,在真空吸盘线路中加装熔断器,可以避免整流二级管损坏。

方向控制阀如何选型

方向控制阀的选型需要注意以下五条: 1、根据流量选择阀的通径是根据气动执行机构在工作压力状态下的流量值来选取的。目前国内各生产厂对于阀的流量的用自由空气流量(ANR),也有的用有压状态下的空气流量(一般是指在0.5Mpa工作压力下)表示。市售的阀流量参数有各种不同的表示方法,而且阀的接管螺纹并不代表阀的通径。 选用的阀的流量应略大于系统所需的流量。信号阀(如手动阀)是根据它距所控制阀的远近、数量和响应时间要求来选择的。一般,对集中控制或距离在20M以内的场合,可选3mm通径的;对于距离距离在20m以上或控制数量较多的场合,可选6mm通径的。 2、根据气动自动化系统工作要求选用阀的功能及控制方式,包括元件的位置数、通路数、记忆功能、静置时通断状态。应尽量选择与所需机能相一致的阀,如选不到可用其它阀或用几个阀组合使用。如用二位五通代替二位三通或二位二通阀,只要将不用的孔口用堵头堵上即可。又如用两个二位三通阀代替一个二位五通阀,或用两个二位二通阀代替一个二位三通阀。这种方法一般不推荐,但在维修急用时可一试。 3、根据现场使用条件选择阀的适用范围,包括使用现场的气源压力大小、电源条件(交、直流、电压大小等)、介质温度、环境温度等条件,选择能在此条件下可靠工作的阀。 4、根据气动自动化系统工作要求选用阀的性能,包括阀的最低工作压力、最低控制压力、响应时间、气密性、寿命及可靠性。 如用气瓶惰性气体作为工作介质,对整个系统的气密性要求严格。选择手动阀就应选择滑柱式阀结构,阀在换向过程中各通口之间不会造成相通而产生泄漏。 5、应根据实际情况选择阀的安装方式。从安装维修方面考虑板式连接较好,包括集装式连接,ISO5599.1标准也是板式连接。因此优先采用板式安装方式,特别式对集中控制的气动控制系统更是如此。但管式安装方式的阀占有空间小,也可以集装安装且随着元件的质量和可靠性不断提高,已得到广泛的应用。

过滤器维护有哪些要求?

过滤器维护有哪些要求? 注意实际使用时空气的压力、流量、温度参数是否在过滤器的允许范围之内,并注意上述参数在使用过程中是否有较大的变化。 1、应注意过滤器底部排污器的工作情况是否正常,特别是在低温的冬季,由于小小污水中含有一定量的油分,黏度很大,容易粘附在排污器的运动部件上,造成动作失灵,影响其正常工作。如发生上述情况,可将排污器拆下放入中性的洗涤剂中,经清洗后再装上使用。 2、应随时注意滤芯的工作情况(如有无破损、泄漏滤材粉末或纤维丝混入空气造成二次污染等)。如有意外情况,应立即更换滤芯。 3、支管道用普通型过滤器的下壳体一般采用透明的有机玻璃(聚碳酸脂)制成,有足够的耐压强度。但遇酸、碱等腐蚀性气体,则易受损害。因此,应注意周围环境有无腐蚀性气体对其造成损害。必要时,可采用金属壳体替代之。  

真空吸盘搭配真空压力开关的作用

真空吸盘搭配真空压力开关的作用 真空吸盘是需要在真空环境下才能工作,如果搭配真空压力开关就可以设定真空压力的,控制真空压力,提升真空吸盘工作的灵活性。  真空压力开关是用于检测真空压力的开关。当真空压力未达到设定值时,开关处于断开状态。当真空压力达到设定值时,开关处于接通状态,发出电信号,指挥真空吸盘机构动作。当真空系统存在泄漏、真空吸盘破损或气源压力变动等原因而影响到真空压力大小时,装上真空压力开关便可保证真空系统安全可靠的工作。  真空压力开关按功能分,有通用型和小孔口吸着确认型;按电触点的形式分,有无触点式(电子式)和有触点式(磁性舌簧开关式等)。一般使用的压力开关,主要用于确认设定压力,但真空压力开关确认设定压力的工作频率高,所以真空压力开关应具有较高的开关频率,即响应速度要快。